首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid analog albizziin was used to isolate Chinese hamster ovary cell lines which overproduce asparagine synthetase. Mutants selected in a single step after ethyl methane sulfonate mutagenesis were approximately 10-fold more resistant to the drug than the parental lines and expressed 8- to 17-fold elevations in enzyme activity. The karyotypes of these lines show alterations such as breaks and translocations affecting the long arm of chromosome 1. Cell lines isolated in several steps by growth in progressively increasing concentrations of albizziin were more resistant to the drug and exhibited up to 300-fold enhancement of asparagine synthetase activity. The multistep albizziin-resistant cell lines usually had expanded chromosomal regions which stained somewhat homogeneously, often on the long arm of chromosome 1. These results suggest that resistance to albizziin in the multistep lines may be due to gene amplification.  相似文献   

2.
The activity of asparagine synthetase in Chinese hamster ovary (CHO) cells is increased in response to asparagine deprivation or decreased aminoacylation of several tRNAs (Andrulis, I. L., Hatfield, G. W., and Arfin, S. M. (1979) J. Biol. Chem. 254, 10629-10633). CHO cells resistant to beta-aspartylhydroxamate have up to 5-fold higher levels of asparagine synthetase than the parental line (Gantt, J. S., Chiang, C. S., Hatfield, G. W., and Arfin, S. M. (1980) J. Biol. Chem. 255, 4808-4813). We have investigated the basis for these differences in enzyme activity by combined radiochemical and immunological techniques. The asparagine synthetase of beef pancreas was purified to apparent homogeneity. Antibodies raised against the purified protein cross-react with the asparagine synthetase of CHO cells. Immunotitrations show that the amount of enzyme protein in physiologically or genetically derepressed CHO strains is proportional to the level of enzyme activity. Measurement of the relative rates of asparagine synthetase synthesis by pulse-labeling experiments demonstrate that the difference in the number of asparagine synthetase molecules is closely correlated with the rate of enzyme synthesis. In contrast, the half-life of asparagine synthetase in wild type cells and in physiologically or genetically derepressed cells is very similar. It appears that the increased levels of asparagine synthetase can be attributed solely to an increased rate of enzyme synthesis.  相似文献   

3.
Molecular cloning of a cDNA for Chinese hamster ovary asparagine synthetase   总被引:2,自引:0,他引:2  
In previous reports we have described the isolation and characterization of a number of Chinese hamster ovary (CHO) cell mutants resistant to the amino acid analogue albizziin (Alb). Multistep mutants were derived which showed a high degree of drug resistance and expressed increased levels of asparagine synthetase (AS) levels up to 300-fold over that of the parental cell line. Karyotypic analysis of these mutants revealed homogeneously staining regions (HSRs) usually indicative of gene amplification. In the present work, we provide further proof for gene amplification by showing that the mutants greatly overproduce functional AS mRNA, as evidenced by in vitro translation of purified mRNA and immunoprecipitation of AS.

By using these overproducing mutants as sources of mRNA coupled with velocity centrifugation, we have been able to greatly enrich for AS sequences in our mRNA preparations to the point where they represent 1–5% of the total message. This facilitated cloning and selection of the cDNA sequences complementary to the gene. Utilizing these cloned cDNAs, we have demonstrated a correlation between gene copy number and enzyme expression in the parent and Alb-resistant mutants, thus providing direct evidence that drug resistance is due to gene amplification.  相似文献   


4.
Asparagine synthetase cDNAs containing the complete coding region were isolated from a human fibroblast cDNA library. DNA sequence analysis of the clones showed that the message contained one open reading frame encoding a protein of 64,400 Mr, 184 nucleotides of 5' untranslated region, and 120 nucleotides of 3' noncoding sequence. Plasmids containing the asparagine synthetase cDNAs were used in DNA-mediated transfer of genes into asparagine-requiring Jensen rat sarcoma cells. The cDNAs containing the entire protein-coding sequence expressed asparagine synthetase activity and were capable of conferring asparagine prototrophy on the Jensen rat sarcoma cells. However, cDNAs which lacked sequence for as few as 20 amino acids at the amino terminal could not rescue the cells from auxotrophy. The transferant cell lines contained multiple copies of the human asparagine synthetase cDNAs and produced human asparagine synthetase mRNA and asparagine synthetase protein. Several transferants with numerous copies of the cDNAs exhibited only basal levels of enzyme activity. Treatment of these transferant cell lines with 5-azacytidine greatly increased the expression of asparagine synthetase mRNA, protein, and activity.  相似文献   

5.
6.
The growth of Chinese hamster ovary cells in a complete medium lacking asparagine is inhibited by beta-aspartylhydroxamate. The inhibition is overcome by the presence of asparagine in the growth medium. beta-Aspartylhydroxamate inhibits the activity of both asparagine synthetase and asparaginyl-tRNA synthetase in vitro. beta-Aspartylhydroxamate-resistant clones of Chinese hamster ovary cells have been isolated and three of these have been characterized. One clone, AH12, is 3-fold more resistant to beta-aspartylhydroxamate than the parental line and has 2 times higher levels of asparagine synthetase activity. Strains AH2 and AH5 are 6- to 7-fold more resistant to beta-aspartylhydroxamate and have 5 times higher levels of asparagine synthetase. The regulation of the expression of asparagine synthetase is altered in all three resistant cell lines. Whereas asparagine synthetase activity varies 2- to 3-fold in response to the asparagine content of the medium or to the extent of aminoacylation of tRNALeu in the parental cells, the activity of asparagine synthetase in the resistant cells is elevated under all growth conditions. No significant changes in the Km for substrates, Ki for beta-aspartylhydroxamate, or thermal stability were found for the asparagine synthetase of the resistant cells. These variants should prove useful in understanding the mechanisms involved in regulating the levels of asparagine synthetase in mammalian cells.  相似文献   

7.
We studied immunochemical properties of rat testicular asparagine synthetase. Western blot analysis of testis extract with polyclonal antibody raised against purified asparagine synthetase revealed an immunoreactive band at 62 kDa. The pancreas, brain, thymus, and spleen also showed 62-kDa bands. The intensities of these bands were roughly proportional to the specific activities of the enzyme in these tissues. The antibody showed some degree of cross-reactivity to asparagine synthetases from human, beef, pig, mouse, guinea pig, chicken, and frog, but not carp. But the enzyme from human HL-60 cells and lower vertebrates reacted with the antibody less strongly than enzyme from rats. The N-terminal amino acid sequence of the enzyme, determined by the Edman degradation method, in 10 recovered residues was identical to that of human asparagine synthetase deduced from corresponding cDNA (I.L. Andrulis et al., 1987, Mol. Cell. Biol. 7, 2435-2443). Immunohistochemical staining of the testis showed the presence of asparagine synthetase mainly in Sertoli cells in the seminiferous tubules.  相似文献   

8.
9.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

10.
11.
12.
The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.  相似文献   

13.
Asparagine-requiring Jensen and Walker rat tumor cells and their asparagine-independent variants have been analyzed. The following results were obtained: (1) Both cell lines have very low levels of asparagine synthetase, and non-requiring revertants isolated from these lines have elevated levels of the enzyme. (2) No differences in chromosome number were detected between the parent Jensen line and five Jensen non-requiring revertants isolated from it. (3) Both Jensen and Walker cells undergo asparagineless death when deprived of this amino acid, although the Jensen cells do so at a more rapid rate. (4) Jensen requiring lines are at a selective advantage when grown in competition with non-requiring variants in complete medium, and their growth rate is more rapid when grown separately. The selective coefficients for the variant with respect to the asparagine-requiring parent ASN(-) line were 0.94 for the competition experiments and 0.83 for growth rate estimates. (5) A somatic cell hybrid between Chinese hamster cells (which require asparagine at low densities, and posses measurable synthetase activity) and the Walker line was found to be asparagine-independent, and it possessed enzyme levels equivalent to the hamster parent. The results of these investigations suggest a parallel with microbial auxotrophic mutants and can be understood in terms of alterations within nuclear structural genes.  相似文献   

14.
Brears T  Liu C  Knight TJ  Coruzzi GM 《Plant physiology》1993,103(4):1285-1290
Here, we monitor the effects of ectopic overexpression of genes for pea asparagine synthetase (AS1) in transgenic tobacco (Nicotiana tabacum). The AS genes of pea and tobacco are normally expressed only during the dark phase of the diurnal growth cycle and specifically in phloem cells. A hybrid gene was constructed in which a pea AS1 cDNA was fused to the cauliflower mosaic virus 35S promoter. The 35S-AS1 gene was therefore ectopically expressed in all cell types in transgenic tobacco and constitutively expressed at high levels in both the light and the dark. Northern analysis demonstrated that the 35S-AS1 transgene was constitutively expressed at high levels in leaves of several independent transformants. Furthermore, amino acid analysis revealed a 10- to 100-fold increase in free asparagine in leaves of transgenic 35S-AS1 plants (construct z127) compared with controls. Plant growth analyses showed increases (although statistically insignificant) in growth phenotype during the vegetative stage of growth in 35S-AS1 transgenic lines. The 35S-AS1 construct was further modified by deletion of the glutamine-binding domain of the enzyme (gln[delta]AS1; construct z167). By analogy to animal AS, we reasoned that inhibition of glutamine-dependent AS activity might enhance the ammonia-dependent AS activity. The 3- to 19-fold increase in asparagine levels in the transgenic plants expressing gln[delta]AS1 compared with wild type suggests that the novel AS holoenzyme present in the transgenic plants (gln[delta]AS1 homodimer) has enhanced ammonia-dependent activity. These data indicate that manipulation of AS expression in transgenic plants causes an increase in nitrogen assimilation into asparagine, which in turn produces effects on plant growth and asparagine biosynthesis.  相似文献   

15.
The growth of the mung bean (Vigna radiata) seedling is accompanied by the biosynthesis and accumulation of the endopeptidase vicilin peptidohydrolase and the catabolism of the reserve proteins in the cotyledons. If the axis is removed from the dry seeds and the cotyledons incubated on moist sand the accumulation of vicilin peptidohydrolase is reduced by 77% and the catabolism of reserve proteins slowed to 25% of the rate in intact seedlings. The cotyledons and the cotyledon exudate are rich in asparagine and this amino acid accounts for more than half of the reduced nitrogen exported from the cotyledons. Glutamine synthetase and asparagine synthetase, two key enzymes in the pathway of asparagine synthesis, are under temporal control in the cotyledons. Their activities increase 3.5- and 10-fold, respectively, then decline again. These increases in enzyme activity occur to the same extent in excised cotyledons and are prevented when the cotyledons are incubated in 5 micromolar cycloheximide. The results indicate that the axis may control certain key metabolic events in the cotyledons, such as the synthesis of vicilin peptidohydrolase, while many other anabolic activities may not depend on a growing axis.  相似文献   

16.
17.
Accurate translation of the genetic code depends on the ability of aminoacyl-tRNA synthetases to distinguish between similar amino acids. In order to investigate the basis of amino acid recognition and to understand the role played by the zinc ion present in the active site of threonyl-tRNA synthetase, we have determined the crystal structures of complexes of an active truncated form of the enzyme with a threonyl adenylate analog or threonine. The zinc ion is directly involved in threonine recognition, forming a pentacoordinate intermediate with both the amino group and the side chain hydroxyl. Amino acid activation experiments reveal that the enzyme shows no activation of isosteric valine, and activates serine at a rate 1,000-fold less than that of cognate threonine. This study demonstrates that the zinc ion is neither strictly catalytic nor structural and suggests how the zinc ion ensures that only amino acids that possess a hydroxyl group attached to the beta-position are activated.  相似文献   

18.
L H Thompson  D J Lofgren  G M Adair 《Cell》1977,11(1):157-168
A number of conditional lethal mutants of CHO cells that are defective in protein synthesis have been characterized with respect to their biochemical lesions. A defective aminoacyl-tRNA synthetase appears to be the basis of each mutant phenotype. In each strain, the specific activity in vitro of the synthetase cognate for one of the following amino acids was substantially reduced: arginine, asparagine, glutamine, histidine or methionine. One mutant, Arg-1, gave no detectable arginyl-tRNA synthetase activity, suggesting that it contains an altered enzyme that is unstable in vitro. Most of the mutants correspondingly exhibited impaired aminoacylation in vivo under nonpermissive conditions. However, two mutants, Arg-1 and His-1, appeared to have normal levels of acylated tRNA under the nonpermissive conditions which inhibited protein synthesis to approximately 50% and 10%, respectively. The expression of each mutant's phenotype, measured by rates of protein synthesis or growth, was a function of temperature and/or the concentration of amino acid cognate for the synthetase found to be deficient in vitro. The properties of these mutants make them applicable to diverse problems related to translation in mammalian cells.  相似文献   

19.
When CHO cells are incubated under conditions of extreme amino acid starvation, effected by withdrawal of an amino acid from the medium together with genetic or chemical interference with the activity of the corresponding aminoacyl-tRNA synthetase, there is a rapid and profound decline in the functional capacity of the protein synthetic machinery. The effect was observed for all amino acids tested including leucine, asparagine, histidine, methionine and glutamine. This decline in protein synthetic potential appears to be due to a progressive permanent inactivation of the specific aminoacyl-tRNA synthetase concerned, as shown by a decline in the amount of cellular, specific aminoacyl-tRNA and a decline in the cell-free enzyme activity, measured after reversal of the starvation conditions. When cells are left for more than several hours under these starvation conditions, they shrink in size, lose viability and eventually disintegrate, with anomalous rapidity. We suggest that the progressive loss of protein synthetic capacity of the cells is the prime cause of these subsequent events. If the starvation conditions are reversed before cell death, regeneration of the protein synthetic potential occurs rapidly but requires protein synthesis itself, implying the existence of strong control mechanisms for cellular aminoacyl-tRNA synthetase activities.  相似文献   

20.
We report the cloning and sequence analysis of the gene for the tyrosyl-tRNA synthetase from Bacillus caldotenax and properties of the gene product. The amino acid sequence of the tyrosyl-tRNA synthetase was found to be 99% homologous with the corresponding enzyme from B. stearothermophilus, with only four amino acid differences. Two of these natural variations were found to involve active site residues of the enzyme and correspond to mutations that have been engineered previously in vitro. One, Thr-51----Ala-51, produced a more active enzyme, possessing a higher value of kcat/KM for ATP. Position 51 is a "hot spot" in the tyrosyl-tRNA synthetase, differing in enzymes derived from Escherichia coli, B. stearothermophilus, and B. caldotenax. The other, His-48----Asn-48, is found to be a neutral mutation but is in one of the rare regions that are conserved with other aminoacyl-tRNA synthetases. The equivalence of histidine and asparagine at position 48 extends the homology in this region to more enzymes. These residues, His-Ile-Gly-His, and now His-Ile-Gly-Asn, form part of the binding site for ATP in the transition state of the reaction. Although B. caldotenax is an obligate thermophile with an optimal growth temperature of 80 degrees C, as much as 20 degrees C above the growth optima of strains of Bacillus stearothermophilus, its tyrosyl-tRNA synthetase has an identical thermal stability in vitro to that from B. stearothermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号