首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We elucidated the interaction of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels and L-type Ca(2+) channels in muscarinic receptor-mediated control of catecholamine secretion in the isolated perfused rat adrenal gland. The muscarinic agonist methacholine (10-300 microM) produced concentration-dependent increases in adrenal output of epinephrine and norepinephrine. The SK(Ca) channel blocker apamin (1 microM) enhanced the methacholine-induced catecholamine responses. The facilitatory effect of apamin on the methacholine-induced catecholamine responses was not observed during treatment with the L-type Ca(2+) channel blocker nifedipine (3 microM) or Ca(2+)-free solution. Nifedipine did not affect the methacholine-induced catecholamine responses, but it inhibited the responses during treatment with apamin. The L-type Ca(2+) channel activator Bay k 8644 (1 microM) enhanced the methacholine-induced catecholamine responses, whereas the enhancement of the methacholine-induced epinephrine and norepinephrine responses were prevented and attenuated by apamin, respectively. These results suggest that SK(Ca) channels are activated by muscarinic receptor stimulation, which inhibits the opening of L-type Ca(2+) channels and thereby attenuates adrenal catecholamine secretion.  相似文献   

2.
3.
Voltage-dependent L-type Ca(2+) (Ca(V)1.2) channels are the principal Ca(2+) entry pathway in arterial myocytes. Ca(V)1.2 channels regulate multiple vascular functions and are implicated in the pathogenesis of human disease, including hypertension. However, the molecular identity of Ca(V)1.2 channels expressed in myocytes of myogenic arteries that regulate vascular pressure and blood flow is unknown. Here, we cloned Ca(V)1.2 subunits from resistance size cerebral arteries and demonstrate that myocytes contain a novel, cysteine rich N terminus that is derived from exon 1 (termed "exon 1c"), which is located within CACNA1C, the Ca(V)1.2 gene. Quantitative PCR revealed that exon 1c was predominant in arterial myocytes, but rare in cardiac myocytes, where exon 1a prevailed. When co-expressed with alpha(2)delta subunits, Ca(V)1.2 channels containing the novel exon 1c-derived N terminus exhibited: 1) smaller whole cell current density, 2) more negative voltages of half activation (V(1/2,act)) and half-inactivation (V(1/2,inact)), and 3) reduced plasma membrane insertion, when compared with channels containing exon 1b. beta(1b) and beta(2a) subunits caused negative shifts in the V(1/2,act) and V(1/2,inact) of exon 1b-containing Ca(V)1.2alpha(1)/alpha(2)delta currents that were larger than those in exon 1c-containing Ca(V)1.2alpha(1)/alpha(2)delta currents. In contrast, beta(3) similarly shifted V(1/2,act) and V(1/2,inact) of currents generated by exon 1b- and exon 1c-containing channels. beta subunits isoform-dependent differences in current inactivation rates were also detected between N-terminal variants. Data indicate that through novel alternative splicing at exon 1, the Ca(V)1.2 N terminus modifies regulation by auxiliary subunits. The novel exon 1c should generate distinct voltage-dependent Ca(2+) entry in arterial myocytes, resulting in tissue-specific Ca(2+) signaling.  相似文献   

4.
Many different G protein-coupled receptors modulate the activity of Ca2+ and K+ channels in a variety of neuronal types. There are five known subtypes (M1-M5) of muscarinic acetylcholine receptors. Knockout mice lacking the M1, M2, or M4 subtypes are studied to determine which receptors mediate modulation of voltage-gated Ca2+ channels in mouse sympathetic neurons. In these cells, muscarinic agonists modulate N- and L-type Ca2+ channels and the M-type K+ channel through two distinct, G-protein mediated pathways. The fast and voltage-dependent pathway is lacking in the M2 receptor knockout mice. The slow and voltage-independent pathway is absent in the M1 receptor knockout mice. Neither pathway is affected in the M4 receptor knockout mice. Muscarinic modulation of the M current is absent in the M1 receptor knockout mice, and can be reconstituted in a heterologous expression system using cloned channels and M1 receptors. Our results using knockout mice are compared with pharmacological data in the rat.  相似文献   

5.
6.
Calcium influx into cardiac myocytes via voltage-gated Ca channels is a key step in initiating the contractile response. During prolonged depolarizations, toxic Ca(2+) overload is prevented by channel inactivation occurring through two different processes identified by their primary trigger: voltage or intracellular Ca(2+). In physiological situations, cardiac L-type (Ca(V)1.2) Ca(2+) channels inactivate primarily via Ca(2+)-dependent inactivation (CDI), while neuronal P/Q (Ca(V)2.1) Ca(2+) channels use preferentially voltage-dependent inactivation (VDI). In certain situations however, these two types of channels have been shown to be able to inactivate by both processes. From a structural view point, the rearrangement occurring during CDI and VDI is not precisely known, but functional studies have underlined the role played by at least 2 channel sequences: a C-terminal binding site for the Ca(2+) sensor calmodulin, essential for CDI, and the loop connecting domains I and II, essential for VDI. The conserved regulation of VDI and CDI by the auxiliary channel beta subunit strongly suggests that these two mechanisms may use a set of common protein-protein interactions that are influenced by the auxiliary subunit. We will review our current knowledge of these interactions. New data are presented on L-P/Q (Ca(V)1.2/Ca(V)2.1) channel chimera that confirm the role of the I-II loop in VDI and CDI, and reveal some of the essential steps in Ca(2+) channel inactivation.  相似文献   

7.
Insulin release by pancreatic β-cells is regulated by diverse intracellular signals, including changes in Ca(2+) concentration resulting from Ca(2+) entry through voltage-gated (Ca(V)) channels. It has been reported that the Rab3 effector RIM1 acts as a functional link between neuronal Ca(V) channels and the machinery for exocytosis. Here, we investigated whether RIM1 regulates recombinant and native L-type Ca(V) channels (that play a key role in hormone secretion) and whether this regulation affects insulin release. Whole-cell patch clamp currents were recorded from HEK-293 and insulinoma RIN-m5F cells. RIM1 and Ca(V) channel expression was identified by RT-PCR and Western blot. RIM1-Ca(V) channel interaction was determined by co-immunoprecipitation. Knockdown of RIM1 and Ca(V) channel subunit expression were performed using small interference RNAs. Insulin release was assessed by ELISA. Co-expression of Ca(V)1.2 and Ca(V)1.3 L-type channels with RIM1 in HEK-293 cells revealed that RIM1 may not determine the availability of L-type Ca(V) channels but decreases the rate of inactivation of the whole cell currents. Co-immunoprecipitation experiments showed association of the Ca(V)β auxiliary subunit with RIM1. The lack of Ca(V)β expression suppressed channel regulation by RIM1. Similar to the heterologous system, an increase of current inactivation was observed upon knockdown of endogenous RIM1. Co-immunoprecipitation showed association of Ca(V)β and RIM1 in insulin-secreting RIN-m5F cells. Knockdown of RIM1 notably impaired high K(+)-stimulated insulin secretion in the RIN-m5F cells. These data unveil a novel functional coupling between RIM1 and the L-type Ca(V) channels via the Ca(V)β auxiliary subunit that contribute to determine insulin secretion.  相似文献   

8.
Homers are scaffolding proteins that bind Ca(2+) signaling proteins in cellular microdomains. The Homers participate in targeting and localization of Ca(2+) signaling proteins in signaling complexes. However, recent work showed that the Homers are not passive scaffolding proteins, but rather they regulate the activity of several proteins within the Ca(2+) signaling complex in an isoform-specific manner. Homer2 increases the GAP activity of RGS proteins and PLCbeta that accelerate the GTPase activity of Galpha subunits. Homer1 gates the activity of TRPC channels, controls the rates of their translocation and retrieval from the plasma membrane and mediates the conformational coupling between TRPC channels and IP(3)Rs. Homer1 stimulates the activity of the cardiac and neuronal L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3. Homer1 also mediates the communication between the cardiac and smooth muscle ryanodine receptor RyR2 and Ca(v)1.2 to regulate E-C coupling. In many cases the Homers function as a buffer to reduce the intensity of Ca(2+) signaling and create a negative bias that can be reversed by the immediate early gene form of Homer1. Hence, the Homers should be viewed as the buffers of Ca(2+) signaling that ensure a high spatial and temporal fidelity of the Ca(2+) signaling and activation of downstream effects.  相似文献   

9.
At the rat motor endplate, pre-synaptic facilitatory adenosine A2A and muscarinic M1 receptors are mutually exclusive. We investigated whether these receptors share a common intracellular signalling pathway. Suppression of McN-A-343-induced M1 facilitation of [3H]ACh release was partially recovered when CGS21680C (an A2A agonist) was combined with the cyclic AMP antagonist Rp-cAMPS. Forskolin, rolipram and 8-bromo-cyclic AMP mimicked CGS21680C blockade of M1 facilitation. Both Rp-cAMPs and nifedipine reduced augmentation of [3H]ACh release by McN-A-343 and CGS21680C. Activation of M1 and A2A receptors enhanced Ca2+ recruitment through nifedipine-sensitive channels. Nifedipine inhibition revealed by McN-A-343 was prevented by chelerythrine (a PKC inhibitor) and Rp-cAMPS, suggesting that Ca(v)1 (L-type) channels phosphorylation by PKA and PKC is required. Rp-cAMPS inhibited [3H]ACh release in the presence of phorbol 12-myristate 13-acetate, but PKC inhibition by chelerythrine had no effect on release in the presence of 8-bromo-cyclic AMP. This suggests that the involvement of PKA may be secondary to M1-induced PKC activation. In conclusion, competition of M1 and A2A receptors to facilitate ACh release from motoneurons may occur by signal convergence to a common pathway involving PKA activation and Ca2+ influx through Ca(v)1 (L-type) channels.  相似文献   

10.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

11.
Ni(2+) inhibits current through calcium channels, in part by blocking the pore, but Ni(2+) may also allosterically affect channel activity via sites outside the permeation pathway. As a test for pore blockade, we examined whether the effect of Ni(2+) on Ca(V)3.1 is affected by permeant ions. We find two components to block by Ni(2+), a rapid block with little voltage dependence, and a slow block most visible as accelerated tail currents. Rapid block is weaker for outward vs. inward currents (apparent K(d) = 3 vs. 1 mM Ni(2+), with 2 mM Ca(2+) or Ba(2+)) and is reduced at high permeant ion concentration (110 vs. 2 mM Ca(2+) or Ba(2+)). Slow block depends both on the concentration and on the identity of the permeant ion (Ca(2+) vs. Ba(2+) vs. Na(+)). Slow block is 2-3x faster in Ba(2+) than in Ca(2+) (2 or 110 mM), and is approximately 10x faster with 2 vs. 110 mM Ca(2+) or Ba(2+). Slow block is orders of magnitude slower than the diffusion limit, except in the nominal absence of divalent cations ( approximately 3 muM Ca(2+)). We conclude that both fast and slow block of Ca(V)3.1 by Ni(2+) are most consistent with occlusion of the pore. The exit rate of Ni(2+) for slow block is reduced at high Ni(2+) concentrations, suggesting that the site responsible for fast block can "lock in" slow block by Ni(2+), at a site located deeper within the pore. In contrast to the complex pore block observed for Ca(V)3.1, inhibition of Ca(V)3.2 by Ni(2+) was essentially independent of voltage, and was similar in 2 mM Ca(2+) vs. Ba(2+), consistent with inhibition by a different mechanism, at a site outside the pore.  相似文献   

12.
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.  相似文献   

13.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

14.
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2004,56(6):713-716
本文旨在研究氨甲酰胆碱(carbachol, CCh)对豚鼠心肌的正性变力性机制。用Axon200A膜片钳放大器观察CCh 对电压钳制下的豚鼠心肌细胞L-型钙电流(ICa)和钠钙交换电流(INa/Ca)的效应。结果表明, CCh(100 μmol/L)分别使正向INa/Ca从对照组的(1.2 ± 0.1) pA/pF 增加到(2.0 ± 0.3) pA/pF,使反向 INa/Ca 从对照组的(1.3 ± 0.5) pA/pF 增加到(2.1 ± 0.8) pA/pF (P<0.01)。CCh对ICa无影响。CCh 对INa/Ca的激动作用可被阿托品和methoctramine所阻断。以上结果提示, CCh 对豚鼠心脏的正性变力作用是通过激动了钠钙交换,而且是 M2 毒蕈碱受体所介导的。  相似文献   

15.
Regulators of G protein signaling (RGS) proteins bind to the α subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Gα, Gβγ, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein–coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing α1B, α2, and β3 Ca channel subunits and m2 receptors, carbachol (1 μM) inhibited whole-cell currents by ∼80% compared with only ∼55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose–response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being ∼18 nM in control cells vs. ∼150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Gα subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein–modulated Ca channels.  相似文献   

16.
T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca(2+) channels are modulated by G-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca(2+) channel subtypes and muscarinic acetylcholine receptors (mAChRS), the Cav3.1 (alpha(1G)), Cav3.2 (alpha(1H)), and Cav3.3 (alpha) T-type Ca(2+)(1I)channels were co-expressed with the M1 Galpha(q/11)-coupled mAChR. Perforated patch recordings demonstrate that activation of M1 receptors has a strong inhibitory effect on Cav3.3 T-type Ca(2+) currents but either no effect or a moderate stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca(2+) channel variants. The inhibition of Cav3.3 channels by M1 receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of Galpha and Gbetagamma proteins and gain-of-function experiments with genetically encoded Galpha subtypes indicate that M1 receptor-mediated inhibition of Cav3.3 occurs through Galpha(q/11). This is supported by experiments showing that activation of the M3 and M5 Galpha(q/11)-coupled mAChRs also causes inhibition of Cav3.3 currents, although Galpha(i)-coupled mAChRs (M2 and M4) have no effect. Examining Cav3.1-Cav3.3 chimeric channels demonstrates that two distinct regions of the Cav3.3 channel are necessary and sufficient for complete M1 receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.  相似文献   

17.
Insulin is secreted from pancreatic beta cells in response to an elevation of cytoplasmic Ca(2+) resulting from enhanced Ca(2+) influx through voltage-gated Ca(2+) channels. Mouse beta cells express several types of Ca(2+) channel (L-, R- and possibly P/Q-type). beta cell-selective ablation of the gene encoding the L-type Ca(2+) channel subtype Ca(v)1.2 (betaCa(v)1.2(-/-) mouse) decreased the whole-cell Ca(2+) current by only approximately 45%, but almost abolished first-phase insulin secretion and resulted in systemic glucose intolerance. These effects did not correlate with any major effects on intracellular Ca(2+) handling and glucose-induced electrical activity. However, high-resolution capacitance measurements of exocytosis in single beta cells revealed that the loss of first-phase insulin secretion in the betaCa(v)1.2(-/-) mouse was associated with the disappearance of a rapid component of exocytosis reflecting fusion of secretory granules physically attached to the Ca(v)1.2 channel. Thus, the conduit of Ca(2+) entry determines the ability of the cation to elicit secretion.  相似文献   

18.
We studied the effect of excitatory neurotransmitters (10(-5) M) on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of cultured myenteric neurons. ACh evoked a response in 48.6% of the neurons. This response consisted of a fast and a slow component, respectively mediated by nicotinic and muscarinic receptors, as revealed by specific agonists and antagonists. Substance P evoked a [Ca(2+)](i) rise in 68.2% of the neurons, which was highly dependent on Ca(2+) release from intracellular stores, since after thapsigargin (5 microM) pretreatment only 8% responded. The responses to serotonin, present in 90.7%, were completely blocked by ondansetron (10(-5) M), a 5-HT(3) receptor antagonist. Specific agonists of other serotonin receptors were not able to induce a [Ca(2+)](i) rise. Removing extracellular Ca(2+) abolished all serotonin and fast ACh responses, whereas substance P and slow ACh responses were more persistent. We conclude that ACh-induced signaling involves both nicotinic and muscarinic receptors responsible for a fast and a more delayed component, respectively. Substance P-induced signaling requires functional intracellular Ca(2+) stores, and the 5-HT(3) receptor mediates the serotonin-induced Ca(2+) signaling in cultured myenteric neurons.  相似文献   

19.
Pore size is of considerable interest in voltage-gated Ca(2+) channels because they exemplify a fundamental ability of certain ion channels: to display large pore diameter, but also great selectivity for their ion of choice. We determined the pore size of several voltage-dependent Ca(2+) channels of known molecular composition with large organic cations as probes. T-type channels supported by the Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 subunits; L-type channels encoded by the Ca(V)1.2, beta(1), and alpha(2)delta(1) subunits; and R-type channels encoded by the Ca(V)2.3 and beta(3) subunits were each studied using a Xenopus oocyte expression system. The weak permeabilities to organic cations were resolved by looking at inward tails generated upon repolarization after a large depolarizing pulse. Large inward NH(4)(+) currents and sizable methylammonium and dimethylammonium currents were observed in all of the channels tested, whereas trimethylammonium permeated only through L- and R-type channels, and tetramethylammonium currents were observed only in L-type channels. Thus, our experiments revealed an unexpected heterogeneity in pore size among different Ca(2+) channels, with L-type channels having the largest pore (effective diameter = 6.2 A), T-type channels having the tiniest pore (effective diameter = 5.1 A), and R-type channels having a pore size intermediate between these extremes. These findings ran counter to first-order expectations for these channels based simply on their degree of selectivity among inorganic cations or on the bulkiness of their acidic side chains at the locus of selectivity.  相似文献   

20.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号