首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repair of the Escherichia coli nucleoid structure after heat shock (50 degrees C, 5 min) was studied. After heat shock the repair process did not include the association of the nucleoid to protein structures as is the case after more severe heat treatments resulting in cell death or inactivation.  相似文献   

2.
Isolation of the Escherichia coli nucleoid   总被引:4,自引:0,他引:4  
Numerous protocols for the isolation of bacterial nucleoids have been described based on treatment of cells with sucrose-lysozyme-EDTA and subsequent lysis with detergents in the presence of counterions (e.g., NaCl, spermidine). Depending on the lysis conditions both envelope-free and envelope-bound nucleoids could be obtained, often in the same lysate. To investigate the mechanism(s) involved in compacting bacterial DNA in the living cell, we wished to isolate intact nucleoids in the absence of detergents and high concentrations of counterions. Here, we compare the general lysis method using detergents with a procedure involving osmotic shock of Escherichia coli spheroplasts that resulted in nucleoids free of envelope fragments. After staining the DNA with DAPI (4',6-diamidino-2-phenylindole) and cell lysis by either isolation procedure, free-floating nucleoids could be readily visualized in fluorescence microscope preparations. The detergent-salt and the osmotic-shock nucleoids appeared as relatively compact structures under the applied ionic conditions of 1 M and 10 mM, respectively. RNase treatment caused no dramatic changes in the size of either nucleoid.  相似文献   

3.
Changes in the structure of the Escherichia coli nucleoid during heat damage and repair were followed by sedimentation analysis in neutral sucrose gradients. Heating at 50 degrees C results first in a decrease in the sedimentation coefficient of the isolated nucleoid. Increasing the heating time, a subsequent increase in sedimentation coefficient is observed. After a heat shock (i.e. 4 min at 50 degrees C), a short incubation at 25 degrees C (i.e. 5 min) allows the nucleoid to repair and return to the sedimentation coefficient of control unheated nucleoids. The nucleoids heated at 50 degrees C for longer periods and incubated afterwards at 25 degrees C demonstrate a different pattern of structural repair. They associate with protein in the first stage of the repair period.  相似文献   

4.
5.
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.  相似文献   

6.
Deoxyribonucleic acid (DNA) of Escherichia coli was found to be attached to the cell membrane at about 20 points. This was determined by fractionation of X-irradiated cells with the M band (magnesium-Sarkosyl crystals) technique. The number of attachment points was computed from the relationship between the amount of DNA in M bands and the number of double-strand breaks introduced by the X-ray treatment. The number of attachment points was decreased fourfold by treatment of cells with rifampin. This effect was apparently due to the action of the drug on ribonucleic acid (RNA) polymerase since the drug did not affect a mutant whose RNA polymerase is resistant to rifampin. This suggests that there may be two classes of attachment points of DNA on the membrane, some of which are removed by rifampin treatment and some which are not. Rifampin treatment also resulted in the uncondensing of isolated nucleoids and in an axial appearance of the nucleoids in ultrathin sections. The results suggest that RNA polymerase plays a role, direct or indirect, in maintaining the structure of the bacterial nucleoid and in some of its attachment to the membrane.  相似文献   

7.
The heterodimeric HU protein, one of the most abundant DNA binding proteins, plays a pleiotropic role in bacteria. Among others, HU was shown to contribute to the maintenance of DNA superhelical density in Escherichia coli. By its properties HU shares some traits with histones and HMG proteins. More recently, its specific binding to DNA recombination and repair intermediates suggests that HU should be considered as a DNA damage sensor. For all these reasons, it will be of interest to follow the localization of HU within the living bacterial cells. To this end, we constructed HU-GFP fusion proteins and compared by microscopy the GFP green fluorescence with images of the nucleoid after DAPI staining. We show that DAPI and HU-GFP colocalize on the E. coli nucleoid. HU, therefore, can be considered as a natural tracer of DNA in the living bacterial cell.  相似文献   

8.
9.
In Escherichia coli, the ability to elicit a heat shock response depends on the htpR gene product. Previous work has shown that the HtpR protein serves as a sigma factor (sigma 32) for RNA polymerase that specifically recognizes heat shock promoters (A.D. Grossman, J.W. Erickson, and C.A. Gross Cell 38:383-390, 1984). In the present study we showed that sigma 32 synthesized in vitro could stimulate the expression of heat shock genes. The in vitro-synthesized sigma 32 was found to be associated with RNA polymerase. In vivo-synthesized sigma 32 was also associated with RNA polymerase, and this polymerase (E sigma 32) could be isolated free of the standard polymerase (E sigma 70). E sigma 32 was more active than E sigma 70 with heat shock genes; however, non-heat-shock genes were not transcribed by E sigma 32. The in vitro expression of the htpR gene required E sigma 70 but did not require E sigma 32.  相似文献   

10.
Small heat shock proteins (sHsp) are widely distributed molecular chaperones that bind to misfolded proteins to prevent irreversible aggregation and aid in refolding to a competent state. The sHsps characterized thus far all contain a conserved α-crystallin, and variable N- and C-termini critical for chaperone activity and oligomerization. The Escherichia coli sHsps IbpA and IbpB share 48% sequence homology, are induced by heat shock and oxidative stress, and each requires the presence of the other to effect protein protection. Molecular Dynamics (MD) simulations of homology-modeled monomers and heterooligomers of these sHsps identify a possible mechanism for cooperation between IbpA and IbpB.  相似文献   

11.
12.
B Wu  A Wawrzynow  M Zylicz    C Georgopoulos 《The EMBO journal》1996,15(18):4806-4816
We have isolated various missense mutations in the essential grpE gene of Escherichia coli based on the inability to propagate bacteriophage lambda. To better understand the biochemical mechanisms of GrpE action in various biological processes, six mutant proteins were overexpressed and purified. All of them, GrpE103, GrpE66, GrpE2/280, GrpE17, GrpE13a and GrpE25, have single amino acid substitutions located in highly conserved regions throughout the GrpE sequence. The biochemical defects of each mutant GrpE protein were identified by examining their abilities to: (i) support in vitro lambda DNA replication; (ii) stimulate the weak ATPase activity of DnaK; (iii) dimerize and oligomerize, as judged by glutaraldehyde crosslinking and HPLC size chromatography; (iv) interact with wild-type DnaK protein using either an ELISA assay, glutaraldehyde crosslinking or HPLC size chromatography. Our results suggest that GrpE can exist in a dimeric or oligomeric form, depending on its relative concentration, and that it dimerizes/oligomerizes through its N-terminal region, most likely through a computer predicted coiled-coil region. Analysis of several mutant GrpE proteins indicates that an oligomer of GrpE is the most active form that interacts stably with DnaK and that the interaction is vital for GrpE biological function. Our results also demonstrate that both the N-terminal and C-terminal regions are important for GrpE function in lambda DNA replication and its co-chaperone activity with DnaK.  相似文献   

13.
14.
The genomic DNA of bacteria is highly compacted in a single or a few bodies known as nucleoids. Here, we have isolated Escherichia coli nucleoid by sucrose density gradient centrifugation. The sedimentation rates, structures as well as protein/DNA composition of isolated nucleoids were then compared under various growth phases. The nucleoid structures were found to undergo changes during the cell growth; i. e., the nucleoid structure in the stationary phase was more tightly compacted than that in the exponential phase. In addition to factor for inversion stimulation(Fis), histone-like nucleoid structuring protein(H-NS), heat-unstable nucleoid protein(HU) and integration host factor(IHF) here we have identified, three new candidates of E. coli nucleoid, namely DNA-binding protein from starved cells(Dps), host factor for phage Qβ(Hfq) and suppressor of td- phenotype A(Stp A). Our results reveal that the major components of exponential phase nucleoid are Fis, HU, H-NS, Stp A and Hfq, while Dps occupies more than half of the stationary phase nucleoid. It has been known for a while that Dps is the main nucleoid-associated protein at stationary phase. From these results and the prevailing information, we propose a model for growth phase dependent changes in the structure and protein composition of nucleoid in E. coli.  相似文献   

15.
Nucleoids obtained from E. coli cells by extraction with 1 M NaCl and detergents containing solution were further extracted with 2 M NaCl. From these samples, that contain only tightly bound proteins, fractions of protein core and peripheral nucleoprotein were obtained. It is shown that DNA synthesis proceeds mainly in the core structures. We have found that DNA polymerase I, which is bound with DNA nucleoid loops and with the above mentioned core structures, is not dissociating in 2M NaCl solution.  相似文献   

16.
The Escherichia coli nucleoid is maintained in its folded highly condensed state by constraints which involve RNA and protein. We have developed a rapid sedimentation assay to determine the state of folding of the membrane-free nucleoid. An approximate measure of the stability of the nucleoids under various conditions can then be estimated by measuring the temperature at which the nucleoids unfold. Using ethidium and gamma irradiation (which removes the negative supercoiling of the native nucleoid) as probes, it can be shown that there are two types of constraint involved in the condensation of the nucleoid. One of these constraints is destabilized by ethidium but stabilized by negative supercoiling; the second constraint is unaffected by both ethidium and negative supercoiling. Several models can be proposed: (i) a DNA . RNA duplex, (ii) a double-strand DNA (dsDNA) . RNA triplex, (iii) DNA-protein interactions, (iv) a topological knot with RNA, and (v) a DNA tetraplex. The topological knot model is not consistent with the data and many combinations of the others can be excluded. If RNA is involved in both constraints then RNA . DNA duplexes and dsDNA . RNA triplexes are involved in stabilizing the nucleoid.  相似文献   

17.
Radioresistance of E. coli cells is slightly increased (dose modification factor (DMF) = 1.2) with temperature elevated from 4 degrees to 43 degrees C at the time of gamma-irradiation. However, an appreciable effect of the thermoinduced radioresistance (DMF = 1.7) was observed when the wild-type cells were exposed to gamma-radiation at 15-43 degrees C (but not at 4 degrees C) after 30-min preincubation at 43 degrees C. This effect was absent in htpR mutants, defective in induction of heat shock proteins, and coupled with the decreased post-irradiation DNA degradation in gamma-irradiated htpR+ cells. It is suggested that heat shock proteins are involved in the thermoinduced radioresistance.  相似文献   

18.
Mitomycin-C-induced changes in the nucleoid of Escherichia coli K12   总被引:1,自引:0,他引:1  
The influence of low concentrations of mitomycin-C on the structure of the envelope-free nucleoid was studied in several strains of Escherichia coli K12. The wild-type strain AB1157 uvr+ rec+ and 3 mitomycin-C-sensitive derivatives carrying mutations in the uvrA, uvrB and recA genes, were used. Treatment of the control strain with mitomycin-C, 0.5 microgram/ml, followed by incubation in drug-free medium resulted in the formation of a transient fast-sedimenting nucleoid with a sedimentation coefficient of 2200 S. A fraction of 25% of the nucleoids had attained the normal sedimentation coefficient of 1570 S 3 h after removal of mitomycin-C. With the uvr- strains, mitomycin-C induced a slow, almost linear increase in the S value of the envelope-free nucleoid. In these cases the S value continued to increase during post-incubation and was 2050 S 3 h after removal of the drug. Post-incubation of recA- cells resulted in loss of supercoiling, decrease in S value of the nucleoid and degradation of DNA. Results obtained with phase-contrast and electron microscopy were in good agreement with the hydrodynamic data.  相似文献   

19.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

20.
ClpB is the Escherichia coli heat shock protein F84.1.   总被引:24,自引:12,他引:12       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号