首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Denitrification is a well-studied respiratory system that is also important in the biogeochemical nitrogen cycle. Environmental signals such as oxygen and N-oxides have been demonstrated to regulate denitrification, though how denitrification is regulated in a bacterial community remains obscure. Pseudomonas aeruginosa is a ubiquitous bacterium that controls numerous genes through cell-to-cell signals. The bacterium possesses at least two N-acyl-L-homoserine lactone (AHL) signals. In our previous study, these quorum-sensing signals controlled denitrification in P. aeruginosa. In addition to the AHL signals, a third cell-to-cell communication signal, 2-heptyl-3-hydroxy-4-quinolone, referred to as the Pseudomonas quinolone signal (PQS), has been characterized. In this study, we examined the effect of PQS on denitrification to obtain more insight into the respiratory regulation in a bacterial community. Denitrification in P. aeruginosa was repressed by PQS, which was partially mediated by PqsR and PqsE. Measuring the denitrifying enzyme activities indicated that nitrite reductase activity was increased by PQS, whereas PQS inhibited nitric oxide reductase and the nitrate-respiratory chain activities. This is the first report to demonstrate that PQS influences enzyme activities, suggesting this effect is not specific to P. aeruginosa. Furthermore, when iron was supplied to the PQS-added medium, denitrifying activity was almost restored, indicating that the iron chelating property of PQS affected denitrification. Thus, our data indicate that PQS regulates denitrification primarily through iron chelation. The PQS effect on denitrification was relevant in a condition where oxygen was limited and denitrification was induced, suggesting its role in controlling denitrification where oxygen is present.  相似文献   

4.
5.
A stable isotope dilution method was developed to analyse 2-heptyl-3,4-dihydroxyquinoline, also called the Pseudomonas quinolone signal (PQS), directly in Pseudomonas aeruginosa cultures by liquid chromatography coupled to mass spectrometry (LC/MS). PQS, along with the isobaric 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), were quantified in various Pseudomonas liquid cultures using a deuterated PQS analog as internal standard. The kinetic of production of these quinolines in a growing culture of P. aeruginosa PA14 showed that their production starts at the end of the logarithmic growth phase and is maximal at the onset of the stationary growth phase. The concentration of PQS reached a maximum at 13 mg/l and then decreased, while the HQNO concentration reached 18 mg/l and then remained stable. Culture supernatants of P. aeruginosa strains PAO1 and PA14 produced similar concentrations of PQS whereas no PQS or HQNO could be detected in culture supernatants of the P. aeruginosa strain PAK or in the other Pseudomonas species tested, including phytopathogenic pseudomonads.  相似文献   

6.
When environmental conditions deteriorate and become inhospitable, generic survival strategies for populations of bacteria may be to enter a dormant state that slows down metabolism, to develop a general tolerance to hostile parameters that characterize the habitat, and to impose a regime to eliminate damaged members. Here, we provide evidence that the pseudomonas quinolone signal (PQS) mediates induction of all of these phenotypes. For individual cells, PQS, an interbacterial signaling molecule of Pseudomonas aeruginosa, has both deleterious and beneficial activities: on the one hand, it acts as a pro-oxidant and sensitizes the bacteria towards oxidative and other stresses and, on the other, it efficiently induces a protective anti-oxidative stress response. We propose that this dual function fragments populations into less and more stress tolerant members which respond differentially to developing stresses in deteriorating habitats. This suggests that a little poison may be generically beneficial to populations, in promoting survival of the fittest, and in contributing to bacterial multi-cellular behavior. It further identifies PQS as an essential mediator of the shaping of the population structure of Pseudomonas and of its response to and survival in hostile environmental conditions.  相似文献   

7.
8.
9.
10.
Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.  相似文献   

11.
12.
Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global levels of c-di-GMP, suggesting complex regulation of this group behavior.  相似文献   

13.
The biofilm formation by Pseudomonas aeruginosa highly increases the bacterial resistance to antimicrobial agents and host immune clearance. The biofilm formation is positively regulated by two small RNAs, RsmY and RsmZ. Previously, we reported that mutation in the polynucleotide phosphorylase (PNPase) coding gene pnp increases the levels of RsmY/Z. However, in this study, we found that the biofilm formation is decreased in the pnp mutant, which is due to a defect in rhamnolipids production. The rhamnolipids production is regulated by the RhlI-RhlR quorum sensing system. We found that PNPase influences the translation of RhlI through its 5′-untranslated region (UTR) and identified that the sRNA P27 is responsible for the translational repression. In vitro translation experiments demonstrated that P27 directly represses the translation of the rhlI mRNA through its 5′UTR in an Hfq-dependent manner. Point mutations in the rhlI 5′UTR or P27, which abolish the pairing between the two RNAs restore the rhlI expression and rhamnolipids production as well as the biofilm formation in the pnp mutant. Overall, our results reveal a novel layer of regulation of the Rhl quorum sensing system by the sRNA P27.  相似文献   

14.
15.
16.
DNA-dependent RNA polymerase from Pseudomonas aeruginosa   总被引:3,自引:0,他引:3  
DNA-dependent RNA polymerase was purified from Pseudomonas aeruginosa. The subunit structure was typical of other eubacterial RNA polymerases in having beta' (157,000), beta (148,000), sigma (87,000), and alpha 2 (45,000) subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was dependent on Mg2+, displaying optimal activity at 10 mM MgCl2. Ca2+ and Zn2+ could not replace MgCl2 in the assay system, while Mn2+, produced partial activity. KCl at concentrations greater than 10 mM inhibited enzyme activity. Optimal enzyme activity was observed at pH 8.5-9.0. The RNA polymerase was stable in 50% (w/v) glycerol at 4 degrees C for more than 3 months. Enzyme activity was inhibited in vitro by heparin, streptolydigin, streptovaracin, actinomycin D, and rifampicin.  相似文献   

17.
The 4.5S RNA gene from Pseudomonas aeruginosa.   总被引:2,自引:3,他引:2       下载免费PDF全文
  相似文献   

18.
目的了解广州地区喹诺酮类耐药铜绿假单胞菌的耐药性及泵抑制剂对其耐药水平降低的作用,并调查血清型分布情况。方法用法国生物梅里埃公司的微生物鉴定和药敏分析系统VITEK-2对127株铜绿假单胞菌进行鉴定和药敏检测,并采用羰酰氰基-对-氯苯胺(CCCP)与环丙沙星共同作用,以琼脂稀释法测定耐药菌的最低抑菌浓度(M IC)的变化,同时用玻片凝集法对耐药株进行血清学分型。结果环丙沙星耐药菌对哌拉西林/他唑巴坦(65.5%)的敏感率最高,只有阿米卡星(64.4%)、哌拉西林(51.7%)和妥布霉素(50.6%)的敏感率大于50.0%,而敏感菌对美罗培南(97.5%)及左氧氟沙星(97.5%)的敏感率最高,妥布霉素(95.0%)次之,对临床常用的13种抗生素,耐药菌较敏感菌的敏感性明显降低(P值均<0.001);耐药菌受泵抑制CCCP作用,M IC降低1~4个稀释度;血清分型率为93.1%,耐药菌的血清型以B型(20.7%)和L型(19.5%)为主。结论耐喹诺酮类铜绿假单胞菌对临床常用抗生素的敏感性降低,并呈多重耐药,使用抗生素 泵抑制剂可提高药物对铜绿假单胞菌的敏感性;血清学分型可以快速简单地监测铜绿假单胞菌在医院内的流行情况。  相似文献   

19.
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon alpha,omega-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号