首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide generated by NADPH Oxidase 5 (Nox5) is regulated by Ca2+ through the interaction of its self-contained Ca2+ binding domain and dehydrogenase domain (DH). Recently, calmodulin (CaM) has been reported to enhance the Ca2+ sensitivity of Nox5 by binding to the CaM-binding domain sequence (CMBD), in which the interaction between CaM and Nox5 is largely unclear. Here, we used the CMBD peptide and truncated DH constructs, and separately studied their interaction with CaM by fluorescence, calorimetry, and dynamic light scattering. Our results revealed that each half-domain of CaM binds one CMBD peptide with a binding constant near 106 M-1 and a binding enthalpy change of ?3.81 kcal/mol, consistent with an extended 1:2 CaM:CMBD structure. However, the recombinant truncated DH proteins exist as oligomers, possibly trimer and tetramer. The oligomeric states are concentration and salt dependent. CaM binding appears to stabilize the DH dimer complexed with CaM. The thermodynamics of CaM binding to the DH is comparable to the peptide-based study except that the near unity binding stoichiometry and a large conformational change were observed. Our result suggests that the oligomeric states of Nox5, mediated by its DH domain and CaM, may be important for its superoxide-generating activity.  相似文献   

2.
Flavocytochrome b(558) (cytb) of phagocytes is a heterodimeric integral membrane protein composed of two subunits, p22(phox) and gp91(phox). The latter subunit, also known as Nox2, has a cytosolic C-terminal "dehydrogenase domain" containing FAD/NADPH-binding sites. The N-terminal half of Nox2 contains six predicted transmembrane α-helices coordinating two hemes. We studied the role of the second transmembrane α-helix, which contains a "hot spot" for mutations found in rare X(+) and X(-) chronic granulomatous disease. By site-directed mutagenesis and transfection in X-CGD PLB-985 cells, we examined the functional and structural impact of seven missense mutations affecting five residues. P56L and C59F mutations drastically influence the level of Nox2 expression indicating that these residues are important for the structural stability of Nox2. A53D, R54G, R54M, and R54S mutations do not affect spectral properties of oxidized/reduced cytb, oxidase complex assembly, FAD binding, nor iodonitrotetrazolium (INT) reductase (diaphorase) activity but inhibit superoxide production. This suggests that Ala-53 and Arg-54 are essential in control of electron transfer from FAD. Surprisingly, the A57E mutation partially inhibits FAD binding, diaphorase activity, and oxidase assembly and affects the affinity of immunopurified A57E cytochrome b(558) for p67(phox). By competition experiments, we demonstrated that the second transmembrane helix impacts on the function of the first intracytosolic B-loop in the control of diaphorase activity of Nox2. Finally, by comparing INT reductase activity of immunopurified mutated and wild type cytb under aerobiosis versus anaerobiosis, we showed that INT reduction reflects the electron transfer from NADPH to FAD only in the absence of superoxide production.  相似文献   

3.
The NADPH oxidases (Noxs) are a family of transmembrane oxidoreductases that produce superoxide and other reactive oxygen species (ROS). Nox5 was the last of the conventional Nox isoforms to be identified and is a calcium-dependent enzyme that does not depend on accessory subunits for activation. Recently, Nox5 was shown to be expressed in human blood vessels and therefore the goal of this study was to determine whether nitric oxide (NO) can modulate Nox5 activity. Endogenously produced NO potently inhibited basal and stimulated Nox5 activity and this inhibition was reversible with chronic, but not acute, exposure to L-NAME. Nox5 activity was reduced by NO donors, iNOS, and eNOS and in endothelial cells and LPS-stimulated smooth muscle cells in a manner dependent on NO concentration. ROS production was diminished by NO in an isolated enzyme activity assay replete with surplus calcium and NADPH. There was no evidence for NO-dependent changes in tyrosine nitration, glutathiolation, or phosphorylation of Nox5. In contrast, there was evidence for the increased nitrosylation of Nox5 as determined by the biotin-switch assay and mass spectrometry. Four S-nitrosylation sites were identified and of these, mutation of C694 dramatically lowered Nox5 activity, NO sensitivity, and biotin labeling. Furthermore, coexpression of the denitrosylation enzymes thioredoxin 1 and GSNO reductase prevented NO-dependent inhibition of Nox5. The potency of NO against other Nox enzymes was in the order Nox1 ≥ Nox3 > Nox5 > Nox2, whereas Nox4 was refractory. Collectively, these results suggest that endogenously produced NO can directly S-nitrosylate and inhibit the activity of Nox5.  相似文献   

4.
Because systems controlled by basal NAD(P)H oxidase activity appear to contribute to differences in responses of endothelium-removed bovine coronary (BCA) and pulmonary (BPA) arteries to hypoxia, we characterized the Nox oxidases activities present in these vascular segments and how cytosolic NAD(P)H redox systems could be controlling oxidase activity. BPA generated approximately 60-80% more lucigenin (5 microM) chemiluminescence detectable superoxide than BCA. Apocynin (10 microM), a NAD(P)H oxidase inhibitor, and 6-aminonicotinamide (1 mM), a pentose phosphate inhibitor (PPP), both attenuated (approximately by 50-70%) superoxide detected in BPA and BCA. There was no significant difference in the expression of Nox2 or Nox4 mRNA or protein detected by Western blot analysis. NADPH and NADH increased superoxide in homogenates and isolated microsomal membrane fractions in a manner consistent with BPA and BCA having similar levels of oxidase activity. BPA had 4.2-fold higher levels of NADPH than BCA. The activity and protein levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting PPP enzyme generating cytosolic NADPH, were 1.5-fold higher in BPA than BCA. Thus BPA differ from BCA in that they have higher levels of G6PD activity, NADPH, and superoxide. Because both arteries have similar levels of Nox expression and activity, elevated levels of cytosolic NADPH may contribute to increased superoxide in BPA.  相似文献   

5.
Stimulation of the proapoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, death receptors 4 (DR4) and 5 (DR5), conventionally induces caspase-dependent apoptosis in tumor cells. Here we report that stimulation of DR4 and/or DR5 by the agonistic protein KD548-Fc, an Fc-fused DR4/DR5 dual-specific Kringle domain variant, activates plasma membrane-associated Nox1 NADPH oxidase to generate superoxide anion and subsequently accumulates intracellular reactive oxygen species (ROS), leading to sustained c-Jun N-terminal kinase activation and eventual apoptotic cell death in human HeLa and Jurkat tumor cells. KD548-Fc treatment induces the formation of a DR4/DR5 signaling complex containing riboflavin kinase (RFK), Nox1, the Nox1 subunits (Rac1, Noxo1, and Noxa1), TNF receptor-associated death domain (TRADD), and TNF receptor-associated factor 2 (TRAF2). Depletion of RFK, but not the Nox1 subunits, TRADD and TRAF2, failed to recruit Nox1 and Rac1 to DR4 and DR5, demonstrating that RFK plays an essential role in linking DR4/DR5 with Nox1. Knockdown studies also reveal that RFK, TRADD, and TRAF2 play critical, intermediate, and negligible roles, respectively, in the KD548-Fc-mediated ROS accumulation and downstream signaling. Binding assays using recombinantly expressed proteins suggest that DR4/DR5 directly interact with cytosolic RFK through RFK-binding regions within the intracellular death domains, and TRADD stabilizes the DR4/DR5-RFK complex. Our results suggest that DR4 and DR5 have a capability to activate Nox1 by recruiting RFK, resulting in ROS-mediated apoptotic cell death in tumor cells.  相似文献   

6.
The integral membrane protein p22phox is an indispensable component of the superoxide-generating phagocyte NADPH oxidase, whose catalytic core is the membrane-associated gp91phox (also known as Nox2). p22phox associates with gp91phox and, through its proline-rich C terminus, provides a binding site for the tandem Src homology 3 domains of the activating subunit p47phox. Whereas p22phox is expressed ubiquitously, its participation in regulating the activity of other Nox enzymes is less clear. This study investigates the requirement of p22phox for Nox enzyme activity and explores the role of its proline-rich region (PRR) for regulating activity. Coexpression of specific Nox catalytic subunits (Nox1, Nox2, Nox3, Nox4, or Nox5) along with their corresponding regulatory subunits (NOXO1/NOXA1 for Nox1; p47phox/p67phox/Rac for Nox2; NOXO1 for Nox3; no subunits for Nox4 or Nox5) resulted in marked production of reactive oxygen. Small interfering RNAs decreased endogenous p22phox expression and inhibited reactive oxygen generation from Nox1, Nox2, Nox3, and Nox4 but not Nox5. Truncated forms of p22phox that disrupted the PRR-inhibited reactive oxygen generation from Nox1, Nox2, and Nox3 but not from Nox4 and Nox5. Similarly, p22phox (P156Q), a mutation that disrupts Src homology 3 binding by the PRR, potently inhibited reactive oxygen production from Nox1 and Nox2 but not from Nox4 and Nox5. Expression of p22phox (P156Q) inhibited NOXO1-stimulated Nox3 activity, but co-expression of NOXA1 overcame the inhibitory effect. The P157Q and P160Q mutations of p22phox showed selective inhibition of Nox2/p47phox/p67phox, and selectivity was specific for the organizing subunit (p47phox or NOXO1) rather than the Nox catalytic subunit. These studies stress the importance of p22phox for the function of Nox1, Nox2, Nox3, and Nox4, and emphasize the key role of the PRR for regulating Nox proteins whose activity is dependent upon p47phox or NOXO1.  相似文献   

7.
Increased oxidative stress plays a role in the pathogenesis of beta-cell dysfunction and death. We studied isoforms of NADPH oxidase components in islets of Langerhans isolated from rat pancreas and tumoral rat beta-cell line RINm5F cells by RT-PCR and sequencing of its products. RT-PCR revealed that isolated islets constitutively expressed mRNA of NADPH oxidase components, Nox1, Nox2, Nox4 and p22(phox) as membrane-associated components and p47(phox), Noxo1 (homologue of p47(phox)), Noxa1 (homologue of p67(phox)), and p40(phox) as cytosolic components. RINm5F cells showed a similar pattern of expression but Nox2 mRNA was not detected. Expression of Nox1, Nox4, Noxo1 and Noxa1 was confirmed by sequencing the PCR products. Immunohistochemistry revealed the expression of NADPH oxidase component in beta-cells of rat pancreatic islets. Glucose-stimulated insulin secretion from isolated islets was suppressed by diphenyleneiodonium, a flavocytochrome inhibitor, but not by apocynin, an inhibitor of p47(phox) translocation to membranes. Our results suggest that the functional significance of NADPH oxidase in insulin secretion may merit further investigation.  相似文献   

8.
Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.  相似文献   

9.
Gluconate 5‐dehydrogenase (Ga5DH) is an NADP(H)‐dependent enzyme that catalyzes a reversible oxidoreduction reaction between D ‐gluconate and 5‐keto‐D ‐gluconate, thereby regulating the flux of this important carbon and energy source in bacteria. Despite the considerable amount of physiological and biochemical knowledge of Ga5DH, there is little physical or structural information available for this enzyme. To this end, we herein report the crystal structures of Ga5DH from pathogenic Streptococcus suis serotype 2 in both substrate‐free and liganded (NADP+/D ‐gluconate/metal ion) quaternary complex forms at 2.0 Å resolution. Structural analysis reveals that Ga5DH adopts a protein fold similar to that found in members of the short chain dehydrogenase/reductase (SDR) family, while the enzyme itself represents a previously uncharacterized member of this family. In solution, Ga5DH exists as a tetramer that comprised four identical ~29 kDa subunits. The catalytic site of Ga5DH shows considerable architectural similarity to that found in other enzymes of the SDR family, but the S. suis protein contains an additional residue (Arg104) that plays an important role in the binding and orientation of substrate. The quaternary complex structure provides the first clear crystallographic evidence for the role of a catalytically important serine residue and also reveals an amino acid tetrad RSYK that differs from the SYK triad found in the majority of SDR enzymes. Detailed analysis of the crystal structures reveals important contributions of Ca2+ ions to active site formation and of specific residues at the C‐termini of subunits to tetramer assembly. Because Ga5DH is a potential target for therapy, our findings provide insight not only of catalytic mechanism, but also suggest a target of structure‐based drug design.  相似文献   

10.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R) is a tetrameric assembly of highly conserved subunits that contain multiple membrane-spanning sequences in the C-terminal region of the protein. In studies aimed at investigating the oligomerization and transmembrane topology of the type-1 InsP(3)R, a series of membrane-spanning region truncation and deletion plasmids were constructed. These plasmids were transiently transfected in COS-1 cells, and the resulting expression products were analyzed for the ability to assemble into tetrameric structures. The topology of the membrane-spanning region truncations and the full-length receptor was determined by immunocytochemical analysis of transfected COS-1 cells using complete or selective permeabilization strategies. Our results are the first to experimentally define the presence of six membrane-spanning regions. These results are consistent with the current model for the organization of the InsP(3)R in the endoplasmic reticulum and show that the truncation mutants are properly targeted and oriented in the endoplasmic reticulum membrane, thus making them amenable reagents to study receptor subunit oligomerization. Fractionation of soluble and membrane protein components revealed that the first two membrane-spanning regions were necessary for membrane targeting of the receptor. Sedimentation and immunoprecipitation experiments show that assembly of the receptor subunits was an additive process as the number of membrane-spanning regions increased. Immunoprecipitations from cells co-expressing the full-length receptor and carboxyl-terminal truncations reveal that constructs expressing the first two or more membrane-spanning domains were capable of co-assembling with the full-length receptor. Inclusion of the fifth membrane-spanning segment significantly enhanced the degree of oligomerization. Furthermore, a deletion construct containing only membrane-spanning regions 5 and 6 oligomerized to a similar extent as that of the wild type protein. Membrane-spanning region deletion constructions that terminate with the receptor's 145 carboxyl-terminal amino acids were found to have enhanced assembly characteristics and implicate the carboxyl terminus as a determinant in oligomerization. Our results reveal a process of receptor assembly involving several distinct yet additive components and define the fifth and sixth membrane spanning regions as the key determinants in receptor oligomerization.  相似文献   

11.
NADPH oxidase 2 (Nox2)-generated reactive oxygen species (ROS) are critical for neutrophil (polymorphonuclear leukocyte (PMN)) microbicidal function. Nox2 also plays a role in intracellular signaling, but the site of oxidase assembly is unknown. It has been proposed to occur on secondary granules. We previously demonstrated that intracellular NADPH oxidase-derived ROS production is required for endotoxin priming. We hypothesized that endotoxin drives Nox2 assembly on endosomes. Endotoxin induced ROS generation within an endosomal compartment as quantified by flow cytometry (dihydrorhodamine 123 and Oxyburst Green). Inhibition of endocytosis by the dynamin-II inhibitor Dynasore blocked endocytosis of dextran, intracellular generation of ROS, and priming of PMN by endotoxin. Confocal microscopy demonstrated a ROS-containing endosomal compartment that co-labeled with gp91(phox), p40(phox), p67(phox), and Rab5, but not with the secondary granule marker CD66b. To further characterize this compartment, PMNs were fractionated by nitrogen cavitation and differential centrifugation, followed by free flow electrophoresis. Specific subfractions made superoxide in the presence of NADPH by cell-free assay (cytochrome c). Subfraction content of membrane and cytosolic subunits of Nox2 correlated with ROS production. Following priming, there was a shift in the light membrane subfractions where ROS production was highest. CD66b was not mobilized from the secondary granule compartment. These data demonstrate a novel, nonphagosomal intracellular site for Nox2 assembly. This compartment is endocytic in origin and is required for PMN priming by endotoxin.  相似文献   

12.
Mo W  Qi J  Zhang JT 《Biochemistry》2012,51(17):3634-3641
ABCG2 is a member of the ATP-binding cassette transporter superfamily, and its overexpression causes multidrug resistance (MDR) in cancer chemotherapy. ABCG2 may also protect cancer stem cells by extruding cytotoxic materials. ABCG2 has previously been shown to exist as a high-order homo-oligomer consisting of possibly 8-12 subunits, and the oligomerization domain was mapped to the C-terminal domain, including TM5, ECL3, and TM6. In this study, we further investigate this domain in detail for the role of each segment in the oligomerization and drug transport function of ABCG2 using domain swapping and site-directed mutagenesis. We found that none of the three segments (TM5, TM6, and ECL3) is essential for the oligomerization activity of ABCG2 and that any one of these three segments in the full-length context is sufficient to support ABCG2 oligomerization. While TM5 plays an important role in the drug transport function of ABCG2, TM6 and ECL3 are replaceable. Thus, each segment in the TM5-ECL3-TM6 domain plays a distinctive role in the oligomerization and function of ABCG2.  相似文献   

13.
14.
Synthesis of reactive oxygen species (ROS) by specific NADPH oxidases (Nox) can serve both defense and differentiation signaling roles in animals and plants. Fungi have three subfamilies of NADPH oxidase. NoxA and NoxB have a structure very similar to the human gp91(phox). NoxC has in addition a Ca(2+) binding motif as found in the human Nox5 and plant Rboh families of NADPH oxidases. A survey of fungal genomes identified up to four Nox genes in some fungal species, but Nox genes are absent from available genomes of the hemiascomycete yeasts, unicellular Basidiomycetes and Zygomycetes, reflecting the diversity of fungal life forms. Specific isoforms of Nox have been shown by genetic analysis to be required for various physiological processes and cellular differentiations, including development of sexual fruiting bodies, ascospore germination, hyphal defense, hyphal growth in both mutualistic and antagonistic plant-fungal interactions. This review provides an overview of our current knowledge of fungal NADPH oxidases, including Nox distribution in the fungal kingdom, Nox structure and regulation, and known biological functions of this important group of enzymes.  相似文献   

15.
Sumimoto H 《The FEBS journal》2008,275(13):3249-3277
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.  相似文献   

16.
Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six α-helices (α1-α6) out of which α2-α5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found that hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the α1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that α1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the α5 helix and the linker between α3 and α4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by α1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.  相似文献   

17.
NADPH oxidases (NOXs) are membrane enzymes whose sole function is the generation of reactive oxygen species. Humans have seven NOX isoenzymes that feature distinct functions in immune response and cell signaling but share the same catalytic core comprising a FAD-binding dehydrogenase domain and a heme-binding transmembrane domain. We previously described a mutation that stabilizes the dehydrogenase domain of a prokaryotic homolog of human NOX5. The thermostable mutant exhibited a large 19?°C increase in the apparent melting temperature (app Tm) and a much tighter binding of the FAD cofactor, which allowed the crystallization and structure determination of the domain holo-form. Here, we analyze the transferability of this mutation onto prokaryotic and eukaryotic full-length NOX enzymes. We found that the mutation exerts a significative stabilizing effect on the full-length NOX5 from both Cylindrospermum stagnale (app Tm increase of 8?°C) and Homo sapiens (app ΔTm of 2?°C). Enhanced thermal stability resulted in more homogeneous preparations of the bacterial NOX5 with less aggregation problems. Moreover, we also found that the mutation increases the overall expression of recombinant human NOX4 and NOX5 in mammalian cells. Such a 2–5-fold increase is mainly due to the lowered cell toxicity, which leads to higher biomasses. Because of the high sequence identity of the catalytic core within this family of enzymes, this strategy can be a general tool to boost the production of all NOXs.  相似文献   

18.
Guanylyl cyclase-B (GC-B) is a single transmembrane receptor that binds C-type natriuretic peptide (CNP). The ligand/receptor appears critical in the regulation of cell proliferation and differentiation where it acts as an adversary of mitogenic signaling pathways. We have isolated three guanylyl cyclase-B isoforms generated from a single gene by alternative splicing and termed them GC-B1, GC-B2, and GC-B3. GC-B1 is full-length and responds maximally to CNP, GC-B2 contains a 25-amino acid deletion in the protein kinase homology domain, and GC-B3 only retains a part of the extracellular ligand-binding domain. GC-B2 binds CNP, but the ligand fails to activate the cyclase, while GC-B3 fails to bind ligand. When GC-B2 or GC-B3 is expressed coincident with GC-B1, they act as dominant negative isoforms by virtue of blocking formation of active GC-B1 homodimers. Relative expression levels of GC-B1, GC-B2, and GC-B3 vary across tissues and as a function of in vitro culture; the relative amount of GC-B2 to GC-B1 is repressed in cultured smooth muscle cells relative to endogenous ratios in the medial layer cells of the aorta. Thus, GC-B isoform levels can be independently regulated. Given that the splice variants serve as dominant negative forms, these will serve as regulators of the full-length GC-B.  相似文献   

19.
To elucidate the mechanism of activation of procaspase-9 by Apaf-1, we produced recombinant full-length Apaf-1 and purified it to complete homogeneity. Here we show using gel filtration that full-length Apaf-1 exists as a monomer that can be transformed to an oligomeric complex made of at least eight subunits after binding to cytochrome c and dATP. Apaf-1 binds to cytochrome c in the absence of dATP but does not form the oligomeric complex. However, when dATP is added to the cytochrome c-bound Apaf-1 complex, complete oligomerization occurs, suggesting that oligomerization is driven by hydrolysis of dATP. This was supported by the observation that ATP, but not the nonhydrolyzable adenosine 5'-O-(thiotriphosphate), can induce oligomerization of the Apaf-1-cytochrome c complex. Like the spontaneously oligomerizing Apaf-530, which lacks its WD-40 domain, the oligomeric full-length Apaf-1-cytochrome c complex can bind and process procaspase-9 in the absence of additional dATP or cytochrome c. However, unlike the truncated Apaf-530 complex, the full-length Apaf-1 complex can release the mature caspase-9 after processing. Once released, mature caspase-9 can process procaspase-3, setting into motion the caspase cascade. These observations indicate that cytochrome c and dATP are required for oligomerization of Apaf-1 and suggest that the WD-40 domain plays an important role in oligomerization of full-length Apaf-1 and the release of mature caspase-9 from the Apaf-1 oligomeric complex.  相似文献   

20.
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号