共查询到20条相似文献,搜索用时 7 毫秒
1.
《Journal of receptor and signal transduction research》2013,33(2):139-146
E2F1 promotes DNA damage-induced apoptosis and the post-translational modifications of E2F1 play an important role in the regulation of E2F1-mediated cell death. Here, we found that Set9 and LSD1 regulate E2F1-mediated apoptosis upon DNA damage. Set9 methylates E2F1 at lysine 185, a conserved residue in the DNA-binding domain of E2F family proteins. The methylation of E2F1 by Set9 leads to the stabilization of E2F1 and up-regulation of its proapoptotic target genes p73 and Bim, and thereby induces E2F1-mediated apoptosis in response to genotoxic agents. We also found that LSD1 demethylates E2F1 at lysine 185 and reduces E2F1-mediated cell death. The identification of the methylation/demethylation of E2F1 by Set9/LSD1 suggests that E2F1 is dynamically regulated by epigenetic enzymes in response to DNA damage. 相似文献
2.
DNA damage-induced cell death by apoptosis 总被引:1,自引:0,他引:1
3.
The molecular control of DNA damage-induced cell death 总被引:2,自引:0,他引:2
Coultas L Strasser A 《Apoptosis : an international journal on programmed cell death》2000,5(6):491-507
Because of the singular importance of DNA for genetic inheritance, all organisms have evolved mechanisms to recognize and respond to DNA damage. In metazoans, cells can respond to DNA damage either by undergoing cell cycle arrest, to facilitate DNA repair, or by undergoing cell suicide. Cell death can either occur by activation of the apoptotic machinery or simply be a consequence of irreparable damage that prevents further cell division. In germ cells, mechanisms for limiting alterations to the genome are required for faithful propagation of the species whereas in somatic cells, responses to DNA damage prevent the accumulation of mutations that might lead to aberrant cell proliferation or behavior. Several of the genes that regulate cellular responses to DNA damage function as tumor suppressors. The clinical use of DNA damaging agents in the treatment of cancer can activate these tumor suppressors and exploits the cellular suicide and growth arrest mechanisms that they regulate. It appears that in some but not all types of tumors the propensity to undergo apoptosis is a critical determinant of their sensitivity to anti-cancer therapy. This review describes current understanding of the molecular control of DNA damage-induced apoptosis with particular attention to its role in tumor suppression and cancer therapy. 相似文献
4.
5.
Yuan L Yu WM Yuan Z Haudenschild CC Qu CK 《The Journal of biological chemistry》2003,278(17):15208-15216
SHP-2, a ubiquitously expressed Src hmology 2 (SH2) domain-containing tyrosine phosphatase, plays a critical role in the regulation of growth factor and cytokine signal transduction. Here we report a novel function of this phosphatase in DNA damage-induced cellular responses. Mutant embryonic fibroblast cells lacking functional SHP-2 showed significantly decreased apoptosis in response to DNA damage. Following cisplatin treatment, induction of p73 and its downstream effector p21(Cip1) was essentially blocked in SHP-2 mutant cells. Further investigation revealed that activation of the nuclear tyrosine kinase c-Abl, an essential mediator in DNA damage induction of p73, was impaired in the mutant cells, suggesting a functional requirement of SHP-2 in c-Abl activation. Consistent with this observation, the effect of overexpression of c-Abl kinase in SHP-2 mutant cells on sensitizing the cells to DNA damage-induced death was abolished. Additionally, we found that in embryonic fibroblast cells 30-40% of SHP-2 was localized in the nuclei, and that a fraction of nuclear SHP-2 was constitutively associated with c-Abl via its SH3 domain. Phosphatase activity of nuclear but not cytoplasmic SHP-2 was significantly enhanced in response to DNA damage. These results together suggest a novel nuclear function for SHP-2 phosphatase in the regulation of DNA damage-induced apoptotic responses. 相似文献
6.
Buscemi G Carlessi L Zannini L Lisanti S Fontanella E Canevari S Delia D 《Molecular and cellular biology》2006,26(21):7832-7845
Chk2 kinase is activated by DNA damage to regulate cell cycle arrest, DNA repair, and apoptosis. Phosphorylation of Chk2 in vivo by ataxia telangiectasia-mutated (ATM) on threonine 68 (T68) initiates a phosphorylation cascade that promotes the full activity of Chk2. We identified three serine residues (S19, S33, and S35) on Chk2 that became phosphorylated in vivo rapidly and exclusively in response to ionizing radiation (IR)-induced DNA double-strand breaks in an ATM- and Nbs1-dependent but ataxia telangiectasia- and Rad3-related-independent manner. Phosphorylation of these residues, restricted to the G(1) phase of the cell cycle, was induced by a higher dose of IR (>1 Gy) than that required for phosphorylation of T68 (0.25 Gy) and declined by 45 to 90 min, concomitant with a rise in Chk2 autophosphorylation. Compared to the wild-type form, Chk2 with alanine substitutions at S19, S33, and S35 (Chk2(S3A)) showed impaired dimerization, defective auto- and trans-phosphorylation activities, and reduced ability to promote degradation of Hdmx, a phosphorylation target of Chk2 and regulator of p53 activity. Besides, Chk2(S3A) failed to inhibit cell growth and, in response to IR, to arrest G(1)/S progression. These findings underscore the critical roles of S19, S33, and S35 and argue that these phosphoresidues may serve to fine-tune the ATM-dependent response of Chk2 to increasing amounts of DNA damage. 相似文献
7.
8.
Genotoxic stress triggers apoptosis through multiple signaling pathways. Recent studies have demonstrated a specific induction of E2F1 accumulation and a role for E2F1 in apoptosis upon DNA damage. Induction of E2F1 is mediated by phosphorylation events that are dependent on DNA damage-responsive protein kinases, such as ATM. How ATM phosphorylation leads to E2F1 stabilization is unknown. We now show that 14-3-3 tau, a phosphoserine-binding protein, mediates E2F1 stabilization. 14-3-3 tau interacts with ATM-phosphorylated E2F1 during DNA damage and inhibits E2F1 ubiquitination. Depletion of 14-3-3 tau or E2F1, but not E2F2 or E2F3, blocks adriamycin-induced apoptosis. 14-3-3 tau is also required for expression and induction of E2F1 apoptotic targets, such as p73, Apaf-1, and caspases, during DNA damage. Together, these data demonstrate a novel function for 14-3-3 tau in the regulation of E2F1 protein stability and apoptosis during DNA damage. 相似文献
9.
10.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2952-2964
Progression through the G2/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions. 相似文献
11.
12.
13.
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development. 相似文献
14.
Verschuren EW Ban KH Masek MA Lehman NL Jackson PK 《Molecular and cellular biology》2007,27(22):7955-7965
Expression of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 is required for the accumulation of APC/C substrates crucial for DNA synthesis and mitotic entry. We show that in vivo Emi1 expression correlates with the proliferative status of the cellular compartment and that cells lacking Emi1 undergo cellular senescence. Emi1 depletion leads to strong decreases in E2F target mRNA and APC/C substrate protein abundances. However, cyclin E mRNA and cyclin E protein levels and associated kinase activities are increased. Cells lacking Emi1 undergo DNA damage, likely explained by replication stress upon deregulated cyclin E- and A-associated kinase activities. Inhibition of ATM kinase prevents induction of senescence, implying that senescence is a consequence of DNA damage. Surprisingly, no senescence or no extensive amount of senescence is evident upon depletion of the Emi1-stabilizing factor Evi5 or Pin1, respectively. Our data suggest that maintenance of a protein stabilization/mRNA expression positive-feedback circuit fueled by Emi1 is required for accurate cell cycle progression, maintenance of DNA integrity, and prevention of cellular senescence. 相似文献
15.
16.
17.
18.
19.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death. 相似文献
20.
E2F1 death pathways as targets for cancer therapy 总被引:2,自引:1,他引:1
Pützer BM 《Journal of cellular and molecular medicine》2007,11(2):239-251