首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
The 1701-base nucleotide sequence (not including the poly(A) tail) of a cDNA for the gamma subunit of the ATP synthase from Chlamydomonas reinhardtii was determined. A start translation sequence, 23 bases in from the 5' end, initiates an 1074-base-long open reading frame. The sequence of the first 21 amino acids at the amino-terminal end of the mature gamma subunit from C. reinhardtii was determined and compared to the deduced amino acid sequence of the open reading frame. From this it was determined that the mature protein contains 323 amino acids, with the first 35 amino acids probably being part of the transit peptide. The length of the mature protein is the same as that for the mature gamma subunit from spinach, for which only a few of the amino acids of the transit peptide are known. The similarity of the two mature proteins at the nucleotide level is 56% while at the amino acid level it is 77%. In addition, the 3 cysteines, which in spinach are involved in the energy-linked catalytic functions of the ATP synthase, are conserved in the predicted amino acid sequence for the gamma subunit from C. reinhardtii. In contrast, the mature C. reinhardtii gamma subunit contains 3 additional cysteine residues not found in the spinach gamma subunit.  相似文献   

2.
Phosphoserine aminotransferase (PSA) catalyzes the conversion of phosphohydroxypyruvate to phosphoserine in the phosphorylated pathway of serine biosynthesis. A cDNA clone encoding PSA was isolated from the cDNA library of spinach (Spinacia oleracea L.) green leaves. Determination of the nucleotide sequence revealed the presence of an open reading frame encoding 430 amino acids, exhibiting 38-50% homology with the amino acid sequences of bacterial, yeast and animal PSA. It contains an N-terminal extension of ca. 60 amino acids in addition to the sequences from other organisms. The general features of plastidic transit peptide are observed in this N-terminal sequence, suggesting the plastid localization of the PSA protein encoded by this cDNA. The bacterial expression of the cDNA could functionally rescue the auxotrophy of serine in the serC- mutant, Escherichia coli KL282. The enzymatic activity of PSA was demonstrated in vitro in the extracts of E. coli over-expressing the cDNA. Southern blot analysis indicated the presence of a couple of related genes (Psa) in the spinach genome. RNA blot hybridization suggested the preferential expression of the Psa gene in the roots of green seedlings and in the suspension cells cultured under a dark condition.  相似文献   

3.
Summary The sequence of an mRNA encoding nitrite reductase (NiR, EC 1.7.7.1.) from the tree Betula pendula was determined. A cDNA library constructed from leaf poly(A)+ mRNA was screened with an oligonucleotide probe deduced from NiR sequences from spinach and maize. A 2.5 kb cDNA was isolated that hybridized to an mRNA, the steady-state level of which increased markedly upon induction with nitrate. The nucleotide sequence of the cDNA contains a reading frame encoding a protein of 583 amino acids that reveals 79% identity with NiR from spinach. The transit peptide of the NiR precursor from birch was determined to be 22 amino acids in size by sequence comparison with NiR from spinach and maize and is the shortest transit peptide reported so far. A graphical evaluation of identities found in the NiR sequence alignment revealed nine well conserved sections each exceeding ten amino acids in size. Sequence comparisons with related redox proteins identified essential residues involved in cofactor binding. A putative binding site for ferredoxin was found in the N-terminal half of the protein.These sequence data appear in the EMBL/GenBank/DDBJ nucleotide sequence data bases under the accession number X60093  相似文献   

4.
A cDNA clone that encodes a chloroplast-localizing isoform of serine acetyltransferase (SATase) (EC 2.3.1.30) was isolated from spinach (Spinacia oleracea L.). The cDNA encodes a polypeptide of 347 amino acids containing a putative transit peptide of ca. 60-70 amino acids at the N-terminal. Deduced amino acid sequence of SATase from spinach exhibited homology with other SATases from plants. DNA blot hybridization analysis showed the presence of 2-3 copies of Sat gene in the genome of spinach. RNA blot hybridization analysis indicated the constitutive expression of Sat gene in green and etiolated seedlings of spinach. Bacterial expression of the cDNA could directly rescue the cysteine auxotrophy of Escherchia coli caused by a lack of SATase locus (cysE). Catalytically active SATase protein was produced in E. coli cells. L-Cysteine, an end product of the cysteine biosynthetic pathway, inhibited the activity of recombinant spinach SATase, indicating the regulatory function of SATase in this metabolic pathway. A chloroplastic localization of this spinach SATase was revealed by the analyses of transgenic plant expressing transit peptide of SATase-beta-glucuronidase (GUS) fusion protein, and transient expression using the transit peptide-green fluorescent protein (GFP) fusion protein. The result from in vitro translation analysis suggests that this cDNA may encode both plastidic and cytosolic SATases.  相似文献   

5.
A lambda gt11 cDNA expression library was constructed from size-fractionated poly(A)-rich RNA of cultured pumpkin cells. A full-length cDNA clone for ascorbate oxidase mRNA was selected from the library by screening with synthetic oligonucleotides designed from the amino-terminal sequence of ascorbate oxidase protein. The identity of the clone was confirmed by comparing the amino acid sequence deduced by nucleotide sequence analysis with that determined for the amino-terminal sequence of pumpkin ascorbate oxidase. The nucleotide sequence of the cDNA insert was found to contain an open reading frame of 579 codons corresponding to a signal peptide of 30 amino acids and the mature 549-residue ascorbate oxidase. Furthermore, it was found that the amino acid sequence deduced from the nucleotide sequence of the cDNA insert contained four potential N-glycosylation sites and copper-binding amino acid residues located in four regions where the sequence was identical or nearly identical to those of the other known blue multicopper oxidases Neurospora crassa laccase and human ceruloplasmin.  相似文献   

6.
7.
菠菜甜菜碱醛脱氢酶基因的克隆和序列分析   总被引:7,自引:0,他引:7  
以耐盐的菠菜mRNA为模板,经反转录合成甜菜碱醛脱氢酶(BADH)基因第一链cDNA。在人工合成的两端引物引导下,通过多聚酶链式反应(PCR),扩增获得双链cDNA。把重组有BADH基因的pUC19转化至E.coli DH5α菌株,亚克隆后测定了基因的全序列。所得到的BADH基因全长序列为1491bp,编码497个氨基酸。与文献报道的相比较,核苷酸序列同源性99.8%,氨基酸序列同源性达99.6%。在此基础上,构建了BADH基因的高等植物表达载体。  相似文献   

8.
A cell line with an increased resistance to alkylating agents and an extremely high level of O6-methylguanine-DNA methyltransferase activity was isolated after transfection of methyltransferase-deficient Mer- cells with a cDNA library, prepared from methyltransferase-proficient human Mer+ (Raji) cells. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis revealed that a protein, with a molecular weight of approximately 25,000, accepted 3H label from DNA that had been treated with [3H]methylnitrosourea. Since the cDNA for methyltransferase was integrated into the chromosomal DNA, it was recovered by using the polymerase chain reaction. When the cDNA placed in an expression vector p500 was introduced into Mer- cells, the cells acquired an increased resistance to alkylating agents and exhibited a high level of O6-methylguanine-DNA methyltransferase activity. From the transformants the cDNA could be recovered as a part of the autonomously replicating plasmid. The nucleotide sequence of the cDNA was determined, and an open reading frame comprising 207 amino acid residues was found. The molecular weight of methyltransferase, calculated from the predicted amino acid sequence, was 21,700. The predicted amino acid sequence of the human methyltransferase exhibits an intensive homology with those of the bacterial counterparts, Ada and Ogt proteins of Escherichia coli and Dat protein of Bacillus subtilis, especially around possible methyl acceptor sites.  相似文献   

9.
H Tai  J G Jaworski 《Plant physiology》1993,103(4):1361-1367
A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals.  相似文献   

10.
The complete amino acid sequence of two "isoallergenic" forms of Lol p I, the major rye grass (Lolium perenne) pollen allergen, was deduced from cDNA sequence analysis. cDNA clones isolated from a Lolium perenne pollen library contained an open reading frame coding for a 240-amino acid protein. Comparison of the nucleotide and deduced amino acid sequence of two of these clones revealed four changes at the amino acid level and numerous nucleotide differences. Both clones contained one possible asparagine-linked glycosylation site. Northern blot analysis shows one RNA species of 1.2 kilobases. Based on the complete amino acid sequence of Lol p I, overlapping peptides covering the entire molecule were synthesized. Utilizing these peptides we have identified a determinant within the Lol p I molecule that is recognized by human leukocyte antigen class II-restricted T cells obtained from persons allergic to rye grass pollen.  相似文献   

11.
Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco.  相似文献   

12.
We present the nucleotide sequence and the deduced amino acid sequence of a cDNA clone that encodes the entire precursor of the 37-kDa inner envelope membrane protein from spinach chloroplasts. The precursor protein consists of 344 amino acids (Mr 38,976). In vitro processing followed by radiosequence analysis of the in vitro transcribed and translated precursor protein revealed that its transit peptide consists of only 21 amino acid residues. The transit peptide has the potential to form an amphiphilic alpha-helix with a strong hydrophobic moment. It is speculated that this structural element represents an ancestral envelope-targeting domain. The in vitro synthesized precursor protein is directed to the chloroplasts and it is inserted into the envelope membrane in an ATP-dependent manner. The mature protein (323 amino acid residues, Mr 36,830) has a moderate hydrophobicity and contains only one membrane-spanning segment which is located at the C-terminus and possibly anchors the protein within the envelope membrane.  相似文献   

13.
During the synthesis of fatty acids and their utilization in plastids, fatty acyl moieties are linked to acyl carrier protein (ACP). In contrast to previously cloned organ-specific ACP isoforms, we have now isolated a cDNA clone for a potentially constitutive ACP isoform from a spinach root library. Identity between the amino acid sequence encoded by this cDNA and N-terminal sequence data for ACP-II protein from spinach leaf indicates that the root cDNA encodes ACP-II. The deduced amino acid sequence for ACP-II shows 62% identity with spinach leaf ACP-I. Southern analysis suggests that multiple ACP genes or pseudogenes occur in the spinach genome. High-stringency northern blot analysis and RNase protection studies confirm that, within the region encoding the mature ACP-II, the cloned ACP sequence is expressed in leaves and seeds as well as in roots. Quantitative RNase protection data indicate that the ratio of ACP-I and ACP-II mRNA sequences in leaf is similar to the ratio of the two proteins.  相似文献   

14.
15.
16.
A rat cytoplasmic aminopeptidase P was purified from liver cytosol with a procedure including an affinity elution step with 3 microM inositol 1,3,4-trisphosphate. Proteolytic fragments were generated, sequenced and the enzyme was cloned from a rat liver cDNA library. The structure shows high (87.8% and 95.5%, respectively) sequence identity at the nucleotide and amino acid levels with the previously described human putative cytoplasmic aminopeptidase P. The cloned rat enzyme was functionally expressed in Escherichia coli and also in COS-1 cells. Western blot analysis, using an antibody generated against the recombinant protein, and Northern blot hybridization showed ubiquitous expression of the protein in different tissues with the highest expression level in the testis.  相似文献   

17.
A cDNA, StEN1, encoding a potato (Solanum tuberosum) endonuclease was cloned and sequenced. The nucleotide sequence of this clone contains an open reading frame of 906 nucleotides encoding a protein of 302 amino acids, and with a calculated molecular mass of 34.4kDa and a Pi of 5.6. The deduced StEN1 protein contains a putative signal sequence of 25 amino acid residues. The StEN1 encoded protein shows substantial homology to both plant and fungal endonucleases isolated and cloned from other sources. The highest identity (73%) was observed with AgCEL I from celery, Apium graveolens, ZEN1 from Zinnia elegans (69%) and DSA6 from daylily, Hemerocallis (68%). RT-PCR expression analysis demonstrated that the potato StEN1 gene is constitutively expressed in potato, although minor differences in expression level in different tissues were observed.  相似文献   

18.
The nucleotide sequence of the entire nuclear-encoded precursor for subunit delta of the ATP synthase from spinach thylakoid membranes was determined by cDNA sequencing. Appropriate recombinant DNAs were selected from pBR322 and lambda gt11 libraries made from polyadenylated RNA of greening spinach seedlings. The mature protein consists of 187 amino acid residues corresponding to a molecular weight of 20468. The precursor protein (257 amino acid residues; M r=27676) is probably processed between a Met-Val bond. The predicted secondary structure of the transit sequence (70 residues; 7.2 kDa) resembles that of the Rieske Fe/S polypeptide, but shows little similarity with those of stromal or luminal proteins. The comparison of the chloroplast delta amino acid sequence with the published delta sequences from respiratory ATP synthases of bacterial and mitochondrial sources and from the thylakoid ATP synthase of the cyanobacterium Synechococcus suggests substantial divergence at the genic level although structural elements appear to be remarkably conserved.  相似文献   

19.
20.
cDNA clone for human liver S-adenosylmethionine synthetase (liver-specific isoenzyme) was isolated from a cDNA library of human liver poly(A)+ RNA. The cDNA sequence encoded a polypeptide consisting of 395 amino acid residues with a calculated molecular mass of 43675 Da. Alignment of the predicted amino acid sequence of this protein with that of rat liver S-adenosylmethionine synthetase showed a high degree of similarity. The coding region of the human liver S-adenosylmethionine synthetase cDNA sequence was 89% identical at the nucleotide level and 95% identical at the amino acid level to the sequence for rat liver S-adenosylmethionine synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号