首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on various caecal bacteria and their metabolic activities of feeding diet containing transgalactosylated oligosaccharides (TOS) with or without Bifidobacterium breve (administered in the drinking water) was investigated in rats colonized with a human faecal microflora. TOS (5% w/w in diet) or TOS plus B. breve, given for 4 weeks, induced increases in caecal concentration of total anaerobic bacteria, lactobacilli and bifidobacteria, and decreases in numbers of enterobacteria. Caecal pH was significantly reduced by feeding TOS, as were the activities of β-glucuronidase and nitrate reductase. In contrast, β-glucosidase activity was increased in TOS-fed rats.
Dietary TOS was also associated with decreased conversion, by caecal contents, of the dietary carcinogen 2-amino-3-methyl-3H-imidazo[4, 5- f ] quinoline (IQ) to its genotoxic 7-hydroxy derivative.  相似文献   

2.
W.E. BRENNAN-CRADDOCK, A.K. MALLETT, I.R. ROWLAND AND S. NEALE. 1992. Developmental changes in the activities of bacterial nitrate reductase, nitroreductase and β-glucuronidase and their response to fermentable dietary fibre, were investigated in caecal contents from suckling mice (2-week-old) and in mice aged 4–24 weeks fed either a purified fibre-free diet or that diet supplemented with 5% (w/w) pectin. There was no apparent age-related trend common to the three enzymes studied. Nitrate reductase activity in the mice fed the fibre-free diet did not markedly alter with age. Pectin administration, however, was associated with a significant increase in nitrate reductase activity, particularly in 4-week-old mice. Nitroreductase activity exhibited an overall upward trend in mice from 2 to 12 weeks and thereafter decreased. Caecal β-glucuronidase activity in mice increased sharply between 2 weeks and 4 weeks of age, thereafter not changing significantly until the 24th week. Pectin feeding had no consistent effect on activities either of nitroreductase or β-glucuronidase. The changes in enzyme activities with age were not related to the concentration of bacteria in the caecum, which was highest in the 2-week-old mice.
We conclude that the weaning is a period in which marked changes in caecal bacterial enzyme activities can occur.  相似文献   

3.
The activities of three bacterial biotransformation enzymes (β-glucuronidase, β-glucosidase, nitrate reductase) were determined in suspensions of rat caecal contents or human faeces over the pH range 6–8. All three enzymes were influenced by pH, as exemplified by β-glucosidase activity which diminished as pH increased. In other instances the rat and human flora showed distinct profiles, with nitrate reductase activity undetectable in human faeces below pH 6–6, whereas the rat caecal flora displayed optimal reduction of nitrate around neutrality. The most pronounced host-species difference was found with β-glucuronidase, which showed maximal activity at pH 6–0 in human faecal bacteria, while the rat caecal flora expressed greatest activity at pH 8–0. All three enzyme activities were associated with that fraction of rat caecal or human faecal material sedimented by centrifugation at 5000 g for 15 min, with little or no metabolism occurring in the 11000 g supernatant fluid. The results demonstrate that pH has a pronounced effect on the enzymic activity of bacterial preparations from rat and human sources.  相似文献   

4.
GLYCOSIDASES IN NORMAL AND SCRAPIE MOUSE BRAIN   总被引:4,自引:2,他引:2  
Abstract— The pH optima of ten glycosidases have been determined in normal and scrapie-affected mouse brain. The enzymes α-mannosidase, α-glucosidase and β-glucosidase displayed two peaks of enzyme activity over the pH range examined.
There is a significant increase in the activity of the enzymes α-mannosidase, β-glucuronidase, N -acetyl β-D-glucosaminidase, N -acetyl β-galactosaminidase, β-glucosidase (pH 4.1), α-fucosidase and β-xylosidase in the brains of mice clinically affected with scrapie, whilst only α-mannosidase (pH 4.1), β-glucuronidase, N -acetyl-β-D-glucosinidase and N- acetyl-β-D-gaiactosaminidase are elevated before mice exhibit signs of the disease.  相似文献   

5.
The effects of two levels of transgalactosylated oligosaccharide (TOS) intake on bacterial glycolytic activity, end products of fermentation and bacterial steroid transformation were studied in rats associated with a human faecal flora. Rats were fed a human-type diet containing 0, 5 or 10% TOS. Caecal pH decrease correlated with the amount of TOS in the diet. Intake of the TOS diet induced a decrease in blood cholesterol and a strong increase in β-galactosidase activity in the hindgut. TOS fermentation led to production of hydrogen and short chain fatty acids, whereas ammonia and branched-chain fatty acids were decreased. A diet containing 10% TOS increased caecal lactic acid concentrations and reduced β-glucuronidase activities and steroid transformation.  相似文献   

6.
The activities of four bacterial biotransformation enzymes (β-glucosidase, β-glucuronidase, nitrate reductase and nitroreductase) were measured in the caecal contents of conventional flora rats or germ-free rats contaminated with a mixed, human faecal flora and compared with activities present in a fresh human stool preparation. Both the conventional flora rats and the rats inoculated with a human flora exhibited an enzyme profile generally similar to that of human faeces, although the conventional rat flora exhibited negligible nitrate reductase activity. The enzyme profile remained essentially unaltered in both human flora preparations following supplementation of the diet with pectin, whereas the conventional rat flora responded to this plant cell wall carbohydrate with a significant increase in nitrate reductase activity. The results demonstrate that enzymic activities of the human faecal microflora can be simulated in rats associated with a mixed population of human intestinal bacteria.  相似文献   

7.
Abstract: The inherited deficiency of β-glucuronidase activity causes the lysosomal storage disorder mucopolysaccharidosis (MPS) type VII (Sly disease). The sequential catabolism of glycosaminoglycans in lysosomes is blocked, and undegraded substrates accumulate in cells of many tissues, including neurons and glia in the brain. To evaluate the deficient metabolic pathway, primary cultures of mixed brain cells were established from newborn MPS VII mice. β-Glucuronidase levels and glycosaminoglycan accumulation were studied in normal, carrier, and MPS VII cells. Retroviral vector-mediated transfer of a normal β-glucuronidase cDNA corrected the enzymatic deficiency in MPS VII cells and restored glycosaminoglycan catabolism to normal. High levels of β-glucuronidase expression were sustained in vector-corrected nondividing glial cell cultures for >2 months. These studies provide an in vitro model for evaluating somatic gene transfer in neural cells affected in mucopolysaccharidoses.  相似文献   

8.
T. FUJISAWA AND M. MORI. 1996. The β-glucuronidase activity of intact cells of Escherichia coli and Clostridium perfringens was increased in the presence of bile salts. In contrast, bile salts had inhibitory effects on the activity of β-glucuronidase extracted from the lysed cells. These results suggest that the permeability of the bacterial cells is increased by the presence of bile salts, and that bile salts may significantly enhance bacterial β-glucuronidase activity in the intestinal tract.  相似文献   

9.
Recently, a new gene encoding β-glucuronidase from Streptococcus equi subsp. zooepidemicus (SEZ) was identified and expressed in Escherichia coli. In this paper, the characterization of the enzyme is described. Specific enzyme activity was 120,000 U/mg purified protein at 37°C and pH = 7.0. The temperature and pH value, at which the enzyme has the highest specific activity, were determined and were found to be approximately 52°C and 5.6, respectively. The mutant strain SEZ glcHis was designed for the efficient isolation of β-glucuronidase from S. equi subsp. zooepidemicus. It was observed that the specific activity of β-glucuronidase in the cytoplasmic extract of a mutated strain was about 45% lower than in the cytoplasmic extract of a wild-type strain. The specific activity of purified β-glucuronidase from SEZ glcHis was four times as low as β-glucuronidase purified from E. coli. Comparing the specific activity of purified streptococcal β-glucuronidase from E. coli with E. coli β-glucuronidase (the enzyme with the highest specific activity was supplied by Sigma), the former is 1.8 higher than the latter.  相似文献   

10.
A rapid and direct fluorogenic assay was used to detect Escherichia coli in urine. Most clinical isolates of E. coli produce β-glucuronidase, whereas almost all other enterobacteria lack the enzyme. Spectrofluorimetric assay of β-glucuronidase, without previous induction, was performed on growing and starved uropathogenic E. coli in artificial urine. The presence of 103 cfu ml-1 of E. coli in urine was detected by β-glucuronidase activity in less than 1 h. These results indicate that β-glucuronidase is a rapid, specific and sensitive indicator of the presence of E. coli in urine, and provide additional information on the biological state of the infecting bacterial population.  相似文献   

11.
Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host’s health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.  相似文献   

12.
Abstract The potential of β-glucuronidase as a molecular marker for studying the environmental microbiology of entomopathogenic fungi was assessed. Metarhizium anisopliae was stably co-transformed with plasmids (pNOM102 and pBENA3) containing the β-glucuronidase and benomyl resistance (β-tubulin) genes, using both electroporation and biolistic delivery systems, and it was confirmed that the expressed phenotypes were not exhibited by ten randomly chosen indigenous North-American isolates. In spite of random and multiple integrations, the co-transformants showed normal growth rates and retained their pathogenicity to insects. β-Glucuronidase activity in the co-transformants was used to detect histochemically the presence of fungal hyphae in infected host insects ( Bombyx mori ) and thus provides a practical means of marking genetically engineered pathogens for field trials.  相似文献   

13.
The establishment in piglets of lactobacilli with ability to degrade mixed-linked (1 → 3), (1 → 4) β-D-glucans was studied in faeces from 15 animals. The piglets had free access to creep feed with an estimated content of 2%β-d-glucans from 5 days of age. On days 3 and 35, ca log 8 cfu/g of β-glucan-degrading lactobacilli were found in a majority of the samples. On days 7, 14 and 21 such bacteria were only found occasionally.
During establishment of the microflora in the neonate, the faecal lactobacilli of the piglet seemed related to those of the sow. Later, the metabolic activity of the lactobacilli in piglet faeces showed a connection to the composition of the diet. The possible relation of these bacteria to occurrence of β-glucanases attributed to be endogenous in the pig is discussed.  相似文献   

14.
The activities of four enzymes (β-glucosidase, β-glucuronidase, nitrate reductase and nitroreductase) in selected intestinal bacteria ( Escherichia coli, Clostridium sp., Streptococcus sp., Bacteroides sp. and Lactobacillus salivarius ) were measured after growth in vitro and in vivo . The five strains differed in their activites with Clostridium sp. being the most active for β-gjucosidase, β-glucuronidase and nitroreductase, and E. coli the most active producer of nitrate reductase. Enzyme activity in vivo tended to be higher than in vitro but there were instances where the comparative activities were reversed.  相似文献   

15.
We have detected a plant β-glucuronidase activity, present in several tissues and organs of plant species belonging to different families. The fluorimetric β-glucuronidase assay was used to partially characterize this activity in post-ribosomal supernatants of tobacco leaves. The tobacco activity is very stable at low temperatures, but quickly inactivated above 45°C. It is relatively resistant to proteases and insensitive to-SH group reagents and to ionic conditions. It does not require, nor is it inhibited by, divalent cations. Although these properties are shared by theEscherichia coli β-glucuronidase, the two activities can be distinguished by: (i) their different sensitivity to the specific inhibitor saccharic acid-1,4-lactone; (ii) their different thermal stability (iii) their different pH optima (5.0 for the plant activity and close to neutral for the bacterial enzyme). Therefore, under appropriate experimental conditions, it should be possible to assay theE. coli β-glucuronidase in transgenic plants without interference from the endogenous plant activity.  相似文献   

16.
An animal model was used to assess the effects of orally administered aqueous extract from two commercial health supplement ingredients; First Leaf (FL; composed of blackcurrant extract powder, lactoferrin and lutein and is developed by the Four Leaf Japan Co. Ltd, Japan) and Cassis Anthomix 30 (CAM30; blackcurrant extract powder which is developed by Just the Berries Ltd, New Zealand) on the proliferation of lactobacilli and bifidobacterial species and some undesirable bacteria in the caeca of rats. Gavaging rats with CAM30, FL or inulin three times weekly for 4 weeks resulted in a significant increase in the numbers of bifidobacteria and/or lactobacilli and a significant decrease in the numbers of bacteroides and clostridia. Moreover, rats gavaged with FL, CAM30 and inulin showed 31.5, 18 and 15% reduction in the activity of β-glucuronidase and 26, 30.4 and 18% increment in the activity of β-glucosidase when compared to the control group gavaged with water, respectively. These benefits may make these products good candidates as prebiotic agents. In conclusion, this study has shown that FL and CAM30 can positively modulate key markers of gastrointestinal function in rats.  相似文献   

17.
β-Glucuronidase (EC 3.2.1.31) activity, initially thought absent from plants, has been found in a number of plant families. During an analysis of Agrobacterium -mediated transformation of sugarbeet ( Beta vulgaris L.), significant glucuronidase activity was observed in control (non-transformed) tissues when the fluorogenic substrates 4-methylumbelliferyl-β- d -glucuronic acid, resorufin glucuronic acid and 3-carboxyum-belliferyl-β- d -glucuronic acid were used to quantify β-glucuronidase activity under standard protocol conditions. Similarly, the colorigenic substrate p -nitrophenyl-β- d -glucuronide was hydrolyzed by this sugarbeet-derived glucuronidase. Biochemical and immunological data are presented to indicate significant differences between sugarbeet-derived glucuronidase and that from Escherichia coli (EC 3.2.1.31) encoded by gusA . These differences provide means of distinguishing between the two activities in extracts that contain a mixture of both. Use of X-glue, the substrate utilized in histochemical localizations of glucuronidase activity, gave no reaction product (i.e., indigo precipitate) at pH 7.0. However, at pH 3.0, 4.0 and 5.0 formation of the indigo precipitate was evident within 1 h at 37°C in sugarbeet callus and by 4 h in leaves and petioles. The specific activity of sugarbeet glucuronidase was observed to be strongly pH dependent, with an optimum near pH 4.0. The use of various β-glucuronidase assay techniques as applied to transformation of sugarbeet is discussed.  相似文献   

18.
Deficiency of β-glucuronidase is the cause of the human lysosomal storage disorder mucopolysaccharidosis type VII (MPS VII). The wide interfamilial variation in the presentation of this disorder complicates clinical diagnosis. Since greatly reduced β-glucuronidase enzyme activity may also be found in healthy individuals (pseudodeficiency), diagnosis based on the biochemical phenotype is also difficult. This is illustrated by the patients studied here, who had extremely mild symptoms confined to the spine, or tachycardia, or upper respiratory infection, and who had low β-glucuronidase activity, and excessive granulation of granulocytes and monocytes on routine blood smears. Low enzyme activity was caused by mutations in the β-glucuronidase gene in all cases. One patient was homozygous for the previously described D152N allele. Family information and 35SO4-uptake studies clearly demonstrated that he was pseudodeficient, with symptoms unrelated to his low β-glucuronidase activity. Two patients of another family were compound heterozygotes for a C38G and a Y626H allele, and were probably extremely mild MPS VII patients. The low β-glucuronidase activity in another mild MPS VII patient was due to reduced biosynthesis of stable mRNA from one allele, and a W446X mutation on the second. Extremely low β-glucuronidase enzyme activity was also found in the serum of a carrier of a 1801ΔT allele, possibly as a consequence of a dominant-negative effect. A combination of investigations is necessary in order to differentiate between mild disease and pseudodeficiency in individuals with enzyme activities close to the threshold. Received: 31 May 1997 / Accepted: 26 Augsut 1997  相似文献   

19.
The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments.  相似文献   

20.
Class I β-1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The expression was studied in germinating tobacco seeds of a chimeric β-glucuronidase (GUS) reporter gene fused to 1.6 kb of the 5' flanking sequence of the tobacco class I β-1,3-glucanase B (GLB) promoter. Histological staining for GUS activity showed that expression of the GLB promoter is highly localized in a specific zone of the endosperm in germinating seeds. The temporal and spatial patterns of GUS and β-1,3-glucanase activity found, suggest a novel function for class I β-1,3-glucanases during seed germination in a dicotyledonous plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号