首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian TRPC cation channels   总被引:14,自引:0,他引:14  
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels.  相似文献   

2.
TRPC1 forms the stretch-activated cation channel in vertebrate cells   总被引:10,自引:0,他引:10  
The mechanosensitive cation channel (MscCa) transduces membrane stretch into cation (Na(+), K(+), Ca(2+) and Mg(2+)) flux across the cell membrane, and is implicated in cell-volume regulation, cell locomotion, muscle dystrophy and cardiac arrhythmias. However, the membrane protein(s) that form the MscCa in vertebrates remain unknown. Here, we use an identification strategy that is based on detergent solubilization of frog oocyte membrane proteins, followed by liposome reconstitution and evaluation by patch-clamp. The oocyte was chosen because it expresses the prototypical MscCa (>or=10(7)MscCa/oocyte) that is preserved in cytoskeleton-deficient membrane vesicles. We identified a membrane-protein fraction that reconstituted high MscCa activity and showed an abundance of a protein that had a relative molecular mass of 80,000 (M(r) 80K). This protein was identified, by immunological techniques, as the canonical transient receptor potential channel 1 (TRPC1). Heterologous expression of the human TRPC1 resulted in a >1,000% increase in MscCa patch density, whereas injection of a TRPC1-specific antisense RNA abolished endogenous MscCa activity. Transfection of human TRPC1 into CHO-K1 cells also significantly increased MscCa expression. These observations indicate that TRPC1 is a component of the vertebrate MscCa, which is gated by tension developed in the lipid bilayer, as is the case in various prokaryotic mechanosensitive (Ms) channels.  相似文献   

3.
Canonical transient receptor potential proteins (TRPC) have been proposed to form homo- or heteromeric cation channels in a variety of tissues, including the vascular endothelium. Assembly of TRPC multimers is incompletely understood. In particular, heteromeric assembly of distantly related TRPC isoforms is still a controversial issue. Because we have previously suggested TRPC proteins as the basis of the redox-activated cation conductance of porcine aortic endothelial cells (PAECs), we set out to analyze the TRPC subunit composition of endogenous endothelial TRPC channels and report here on a redox-sensitive TRPC3-TRPC4 channel complex. The ability of TRPC3 and TRPC4 proteins to associate and to form a cation-conducting pore complex was supported by four lines of evidence as follows: 1) Co-immunoprecipitation experiments in PAECs and in HEK293 cells demonstrated the association of TRPC3 and TRPC4 in the same complex. 2) Fluorescence resonance energy transfer analysis demonstrated TRPC3-TRPC4 association, involving close proximity between the N terminus of TRPC4 and the C terminus of TRPC3 subunits. 3) Co-expression of TRPC3 and TRPC4 in HEK293 cells generated a channel that displayed distinct biophysical and regulatory properties. 4) Expression of dominant-negative TRPC4 proteins suppressed TRPC3-related channel activity in the HEK293 expression system and in native endothelial cells. Specifically, an extracellularly hemagglutinin (HA)-tagged TRPC4 mutant, which is sensitive to blockage by anti-HA-antibody, was found to transfer anti-HA sensitivity to both TRPC3-related currents in the HEK293 expression system and the redox-sensitive cation conductance of PAECs. We propose TRPC3 and TRPC4 as subunits of native endothelial cation channels that are governed by the cellular redox state.  相似文献   

4.
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP3) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4−/− mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

5.
We investigated which transient receptor potential (TRP) channel is responsible for the nonselective cation channel (NSCC) activated by carbachol (CCh) in murine stomach with RT-PCR and the electrophysiological method. All seven types of TRP mRNA were detected in murine stomach with RT-PCR. When each TRP channel was expressed, the current-voltage relationship of mTRP5 was most similar to that recorded in murine gastric myocytes. mTRP5 showed a conductance order of Cs(+) > K(+) > Na(+), similar to that in the murine stomach. With 0.2 mM GTPgammaS in the pipette solution, the current was activated transiently in both NSCC in the murine stomach and the expressed mTRP5. Both NSCC activated by CCh in murine stomach and mTRP5 were inhibited by intracellularly applied anti-G(q/11) antibody, PLC inhibitor U-73122, IICR inhibitor 2-aminoethoxydiphenylborate, and nonspecific cation channel blockers La(3+) and flufenamate. There were two other unique properties. Both the native NSCC and mTRP5 were activated by 1-oleoyl-2-acetyl-sn-glycerol. Without the activation of NSCC by CCh, the NSCC in murine stomach was constitutively active like mTRP5. From the above results, we suggest that mTRP5 might be a candidate for the NSCC activated by ACh or CCh in murine stomach.  相似文献   

6.
Mammalian transient receptor potential channels (TRPCs) form a family of Ca(2+)-permeable cation channels currently consisting of seven members, TRPC1-TRPC7. These channels have been proposed to be molecular correlates for capacitative Ca(2+) entry channels. There are only a few studies on the regulation and properties of the subfamily consisting of TRPC4 and TRPC5, and there are contradictory reports concerning the possible role of intracellular Ca(2+) store depletion in channel activation. We therefore investigated the regulatory and biophysical properties of murine TRPC4 and TRPC5 (mTRPC4/5) heterologously expressed in human embryonic kidney cells. Activation of G(q/11)-coupled receptors or receptor tyrosine kinases induced Mn(2+) entry in fura-2-loaded mTRPC4/5-expressing cells. Accordingly, in whole-cell recordings, stimulation of G(q/11)-coupled receptors evoked large, nonselective cation currents, an effect mimicked by infusion of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). However, depletion of intracellular Ca(2+) stores failed to activate mTRPC4/5. In inside-out patches, single channels with conductances of 42 and 66 picosiemens at -60 mV for mTRPC4 and mTRPC5, respectively, were stimulated by GTPgammaS in a membrane-confined manner. Thus, mTRPC4 and mTRPC5 form nonselective cation channels that integrate signaling pathways from G-protein-coupled receptors and receptor tyrosine kinases independently of store depletion. Furthermore, the biophysical properties of mTRPC4/5 are inconsistent with those of I(CRAC), the most extensively characterized store-operated current.  相似文献   

7.
To investigate thepossible role of members of the mammalian transient receptor potential(TRP) channel family (TRPC1-7) in vasoconstrictor-inducedCa2+ entry in vascular smooth muscle cells, we studied[Arg8]-vasopressin (AVP)-activated channels in A7r5aortic smooth muscle cells. AVP induced an increase in free cytosolicCa2+ concentration ([Ca2+]i)consisting of Ca2+ release and Ca2+ influx.Whole cell recordings revealed the activation of a nonselective cationcurrent with a doubly rectifying current-voltage relation strikinglysimilar to those described for some heterologously expressed TRPCisoforms. The current was also stimulated by direct activation of Gproteins as well as by activation of the phospholipase C-coupledplatelet-derived growth factor receptor. Currents were not activated bystore depletion or increased [Ca2+]i.Application of 1-oleoyl-2-acetyl-sn-glycerol stimulated the current independently of protein kinase C, a characteristic property ofthe TRPC3/6/7 subfamily. Like TRPC6-mediated currents, cation currentsin A7r5 cells were increased by flufenamate. Northern hybridizationrevealed mRNA coding for TRPC1 and TRPC6. We therefore suggest thatTRPC6 is a molecular component of receptor-stimulated Ca2+-permeable cation channels in A7r5 smooth muscle cells.

  相似文献   

8.
Plant TD  Schaefer M 《Cell calcium》2003,33(5-6):441-450
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP(3)) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4(-/-) mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

9.
Enkurin is a novel calmodulin and TRPC channel binding protein in sperm   总被引:2,自引:0,他引:2  
The TRPC cation channel family has been implicated in receptor- or phospholipase C (PLC)-mediated Ca2+ entry into animal cells. These channels are present in mammalian sperm and are assigned a role in ZP3-evoked Ca2+ influx that drives acrosome reactions. However, the mechanisms controlling channel activity and coupling Ca2+ entry through these channels to cellular responses are not well understood. A yeast two-hybrid screen was carried out to identify TRPC-interacting proteins that would be candidate regulators or effectors. We identified a novel protein, enkurin, that is expressed at high levels in the testis and vomeronasal organ and at lower levels in selected other tissues. Enkurin interacts with several TRPC proteins (TRPC1, TRPC2, TRPC5, but not TRPC3) and colocalizes with these channels in sperm. Three protein-protein interaction domains were identified in enkurin: a C-terminal region is essential for channel interaction; an IQ motif binds the Ca2+ sensor, calmodulin, in a Ca2+-dependent manner; and a proline-rich N-terminal region contains predicted ligand sequences for SH3 domain proteins, including the SH3 domain of the p85 regulatory subunit of 1-phosphatidylinositol-3-kinase. We suggest that enkurin is an adaptor that functions to localize a Ca2+ sensitive signal transduction machinery in sperm to a Ca2+-permeable ion channel.  相似文献   

10.
The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca(2+) and G(q)/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6-9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2-6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca(2+)and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors.  相似文献   

11.
TRPC1 store-operated cationic channel subunit   总被引:4,自引:0,他引:4  
Beech DJ  Xu SZ  McHugh D  Flemming R 《Cell calcium》2003,33(5-6):433-440
  相似文献   

12.
We have reported that internal Ca2+ store depletion in HSY cells stimulates a nonselective cation current which is distinct from I(CRAC) in RBL cells and TRPC1-dependent I(SOC) in HSG cells (Liu, X., Groschner, K., and Ambudkar, I. S. (2004) J. Membr. Biol. 200, 93-104). Here we have analyzed the molecular composition of this channel. Both thapsigargin (Tg) and 2-acetyl-sn-glycerol (OAG) stimulated similar non-selective cation currents and Ca2+ entry in HSY cells. The effects of Tg and OAG were not additive. HSY cells endogenously expressed TRPC1, TRPC3, and TRPC4 but not TRPC5 or TRPC6. Immunoprecipitation of TRPC1 pulled down TRPC3 but not TRPC4. Conversely, TRPC1 co-immunoprecipitated with TRPC3. Expression of antisense TRPC1 decreased (i) Tg- and OAG-stimulated currents and Ca2+ entry and (ii) the level of endogenous TRPC1 but not TRPC4. Antisense TRPC3 similarly reduced Ca2+ entry and endogenous TRPC3. Yeast two-hybrid analysis revealed an interaction between NTRPC1 and NTRPC3 (CTRPC1-CTRPC3, CTRPC3-CTRPC1, or CTRPC1-NTRPC3 did not interact), which was confirmed by glutathione S-transferase (GST) pull-down assays (GST-NTRPC3 pulled down TRPC1 and vice versa). Expression of NTRPC1 or NTRPC3 induced similar dominant suppression of Tg- and OAG-stimulated Ca2+ entry. NTRPC3 did not alter surface expression of TRPC1 or TRPC3 but disrupted TRPC1-TRPC3 association. In aggregate, our data demonstrate that TRPC1 and TRPC3 co-assemble, via N-terminal interactions, to form a heteromeric store-operated non-selective cation channel in HSY cells. Thus selective association between TRPCs generate distinct store-operated channels. Diversity of store-operated channels might be related to the physiology of the different cell types.  相似文献   

13.
While the role of members from the TRPC family of channels as receptor-operated channels (ROC) is well established and supported by numerous studies, the role of this family of channels as store-operated channels (SOC) has been the focus of a heated controversy over the last few years. In the present study, we have explored the modulation of STIM1 on human TRPC1 channel. We show that the association of STIM1 to TRPC1 favors the insertion of TRPC1 into lipid rafts, where TRPC1 functions as a SOC. In the absence of STIM1, TRPC1 associates to other members from the TRPC family of channels to form ROCs. A novel TIRFM-FRET method illustrates the relevance of the dynamic association between STIM1 and TRPC1 for the activation of SOC and the lipid raft localization of the STIM1-TRPC1 complex. This study provides new evidence about the dual activity of TRPC1 (forming ROC or SOC) and the partners needed to determine TRPC1 functional fate. It highlights also the role of plasma membrane microdomains and ER-PM junctions in modulating TRPC1 channel function and its association to STIM1.  相似文献   

14.
Transient receptor potential canonical 5 (TRPC5) forms cationic channels that are polymodal sensors of factors including oxidized phospholipids, hydrogen peroxide, and reduced thioredoxin. The aim of this study was to expand knowledge of the chemical-sensing capabilities of TRPC5 by investigating dietary antioxidants. Human TRPC5 channels were expressed in HEK 293 cells and studied by patch clamp and intracellular Ca(2+) recording. GFP- and HA-tagged channels were used to quantify plasma membrane localization. Gallic acid and vitamin C suppressed TRPC5 activity if it was evoked by exogenous hydrogen peroxide or lanthanide ions but not by lysophosphatidylcholine or carbachol. Catalase mimicked the effects, suggesting that lanthanide-evoked activity depended on endogenous hydrogen peroxide. Trans-resveratrol, by contrast, inhibited all modes of TRPC5, and its effect was additive with that of vitamin C, suggesting antioxidant-independent action. The IC(50) was ~10 μM. Diethylstilbestrol, a related hydroxylated stilbene, inhibited TRPC5 with a similar IC(50), but its action contrasted sharply with that of resveratrol in outside-out membrane patches where diethylstilbestrol caused strong and reversible inhibition and resveratrol had no effect, suggesting indirect modulation by resveratrol. Resveratrol did not affect channel surface density, but its effect was calcium-sensitive, indicating an action via a calcium-dependent intermediate. The data suggest previously unrecognized chemical-sensing properties of TRPC5 through multiple mechanisms: (i) inhibition by scavengers of reactive oxygen species because a mode of TRPC5 activity depends on endogenous hydrogen peroxide; (ii) direct channel blockade by diethylstilbestrol; and (iii) indirect, antioxidant-independent inhibition by resveratrol.  相似文献   

15.
Selective association of TRPC channel subunits in rat brain synaptosomes   总被引:25,自引:0,他引:25  
TRPC genes encode a ubiquitous family of ion channel proteins responsible for Ca(2+) influx following stimulation of G-protein-coupled membrane receptors linked to phospholipase C. These channels may be localized to large multimeric signaling complexes via association with PDZ-containing scaffolding proteins. Based on sequence homology, the TRPC channel family can be divided into two major subgroups: TRPC1, -C4, and -C5 and TRPC3, -C6, and -C7. Although TRPC channels are thought to be tetramers, the actual subunit composition remains unknown. To determine subunit arrangement, individual TRPC channel pairs were heterologously expressed in Sf9 insect cells and immunoprecipitated using affinity-purified rabbit polyclonal antibodies specific for each channel subtype. Reciprocal co-immunoprecipitations showed that TRPC1, -C4, and -C5 co-associate and that TRPC3, -C6, and -C7 co-associate but that cross-association between the two major subgroups does not occur. Additionally, the interaction between each TRPC channel and the PDZ-containing protein, INAD (protein responsible for the inactivation-no-after-potential Drosophila mutant), was examined. TRPC1, -C4, and -C5 co-immunoprecipitated with INAD, whereas TRPC3, -C6, and -C7 did not. To define channel subunit interactions in vivo, immunoprecipitations were performed from isolated rat brain synaptosomal preparations. The results revealed that TRPC1, -C4, and -C5 co-associate and that TRPC3, -C6, and -C7 co-associate in both cortex and cerebellum but that cross-association between the two major subgroups does not occur. These results demonstrate that TRPC channels are present in nerve terminals and provide the first direct evidence for selective assembly of channel subunits in vivo.  相似文献   

16.
TRPC calcium channels are emerging as a ubiquitous feature of vertebrate cells, but understanding of them is hampered by limited knowledge of the mechanisms of activation and identity of endogenous regulators. We have revealed that one of the TRPC channels, TRPC5, is strongly activated by common endogenous lysophospholipids including lysophosphatidylcholine (LPC) but, by contrast, not arachidonic acid. Although TRPC5 was stimulated by agonists at G-protein-coupled receptors, TRPC5 activation by LPC occurred downstream and independently of G-protein signaling. The effect was not due to the generation of reactive oxygen species or because of a detergent effect of LPC. LPC activated TRPC5 when applied to excised membrane patches and thus has a relatively direct action on the channel structure, either because of a phospholipid binding site on the channel or because of sensitivity of the channel to perturbation of the bilayer by certain lipids. Activation showed dependence on side-chain length and the chemical head-group. The data revealed a previously unrecognized lysophospholipid-sensing capability of TRPC5 that confers the property of a lipid ionotropic receptor.  相似文献   

17.
18.
The protective epithelial barrier in our skin undergoes constant regulation, whereby the balance between differentiation and proliferation of keratinocytes plays a major role. Impaired keratinocyte differentiation and proliferation are key elements in the pathophysiology of several important dermatological diseases, including atopic dermatitis and psoriasis. Ca(2+) influx plays an essential role in this process presumably mediated by different transient receptor potential (TRP) channels. However, investigating their individual role was hampered by the lack of specific stimulators or inhibitors. Because we have recently identified hyperforin as a specific TRPC6 activator, we investigated the contribution of TRPC6 to keratinocyte differentiation and proliferation. Like the endogenous differentiation stimulus high extracellular Ca(2+) concentration ([Ca(2+)](o)), hyperforin triggers differentiation in HaCaT cells and in primary cultures of human keratinocytes by inducing Ca(2+) influx via TRPC6 channels and additional inhibition of proliferation. Knocking down TRPC6 channels prevents the induction of Ca(2+)- and hyperforin-induced differentiation. Importantly, TRPC6 activation is sufficient to induce keratinocyte differentiation similar to the physiological stimulus [Ca(2+)](o). Therefore, TRPC6 activation by hyperforin may represent a new innovative therapeutic strategy in skin disorders characterized by altered keratinocyte differentiation.  相似文献   

19.
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that are widely expressed in numerous cell types. Here, we demonstrate a new mechanism of TPRC isofom 5 (TRPC5) regulation, via cAMP signaling via Gα(s). Monovalent cation currents in human embryonic kidney-293 cells transfected with TRPC5 were induced by G protein activation with intracellular perfusion of GTPγS or by muscarinic stimulation. This current could be inhibited by a membrane-permeable analog of cAMP, 8-bromo-cAMP, by isoproterenol, by a constitutively active form of Gα(s) [Gα(s) (Q227L)], and by forskolin. These inhibitory effects were blocked by the protein kinase A (PKA) inhibitors, KT-5720 and H-89, as well as by two point mutations at consensus PKA phosphorylation sites on TRPC5 (S794A and S796A). Surface expression of several mutated versions of TRPC5, quantified using surface biotinylation, were not affected by Gα(s) (Q227L), suggesting that trafficking of this channel does not underlie the regulation we report. This mechanism of inhibition was also found to be important for the closely related channel, TRPC4, in particular for TRPC4α, although TRPC4β was also affected. However, this form of regulation was not found to be involved in TRPC6 and transient receptor potential vanilloid 6 function. In murine intestinal smooth muscle cells, muscarinic stimulation-induced cation currents were mediated by TRPC4 (>80%) and TRPC6. In murine intestinal smooth muscle cells, 8-bromo-cAMP, adrenaline, and isoproterenol decreased nonselective cation currents activated by muscarinic stimulation or GTPγS. Together, these results suggest that TRPC5 is directly phosphorylated by G(s)/cAMP/PKA at positions S794 and S796. This mechanism may be physiologically important in visceral tissues, where muscarinic receptor and β(2)-adrenergic receptor are involved in the relaxation and contraction of smooth muscles.  相似文献   

20.
Endogenously expressed canonical transient receptor potential (TRPC) homologs were investigated for their role in forming store-operated, 1-oleoyl-2-acetyl-sn-glycerol-stimulated, or carbachol (CCh)-stimulated calcium entry pathways in HEK-293 cells. Measurement of thapsigargin-stimulated Ba(2+) entry indicated that the individual suppression of TRPC1, TRPC3, or TRPC7 protein levels, by small interfering RNA (siRNA) techniques, dramatically inhibited (52-68%) store-operated calcium entry (SOCE), whereas suppression of TRPC4 or TRPC6 had no effect. Combined suppression of TRPC1-TRPC3, TRPC1-TRPC7, TRPC3-TRPC7, or TRPC1-TRPC3-TRPC7 gave only slightly more inhibition of SOCE (74-78%) than seen with suppression of TRPC1 alone (68%), suggesting that these three TRPC homologs work in tandem to mediate a large component of SOCE. Evidence from co-immunoprecipitation experiments indicates that a TRPC1-TRPC3-TRPC7 complex, predicted from siRNA results, does exist. The suppression of either TRPC3 or TRPC7, but not TRPC1, induced a high Ba(2+) leak flux that was inhibited by 2-APB and SKF96365, suggesting that the influx is via leaky store-operated channels. The high Ba(2+) leak flux is eliminated by co-suppression of TRPC1-TRPC3 or TRPC1-TRPC7. For 1-oleoyl-2-acetyl-sn-glycerol-stimulated cells, siRNA data indicate that TRPC1 plays no role in mediating Ba(2+) entry, which appears to be mediated by the participation of TRPC3, TRPC4, TRPC6, and TRPC7. CCh-stimulated Ba(2+) entry, on the other hand, could be inhibited by suppression of any of the five endogenously expressed TRPC homologs, with the degree of inhibition being consistent with CCh stimulation of both store-operated and receptor-operated channels. In summary, endogenous TRPC1, TRPC3, and TRPC7 participate in forming heteromeric store-operated channels, whereas TRPC3 and TRPC7 can also participate in forming heteromeric receptor-operated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号