首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of [3H]thymidine by axenic cultures of anaerobic bacteria was investigated as a means to measure growth. The three fermentative strains and one of the methanogenic strains tested incorporated [3H]thymidine, whereas the sulfate-reducing bacterium and two of the methanogenic bacteria were unable to incorporate [3H]thymidine during growth. It is concluded that the [3H]thymidine incorporation method underestimates bacterial growth in anaerobic environments.  相似文献   

2.
The addition of serum to density-inhibited human fibroblast cultures induced a wave of DNA synthesis, measured as [3H] thymidine incorporation into acid-precipitable material, beginning after 8–12 hr and reaching maximum levels at 16–24 hr. Addition of dibutyryl-3′ : 5′-cyclic AMP (DBcAMP) together with serum inhibited [3H] thymidine incorporation by 75–95%. When DBcAMP was added for the first 4 hr of serum stimulation and then removed, the wave of DNA synthesis was not delayed. This suggested that serum could induce DNA synthesis even though cyclic AMP concentrations were maintained at high levels by DBcAMP during this initial period. These results are inconsistent with the hypothesis that it is the immediate transient reduction in 3′ : 5′-cyclic AMP concentration following the addition of serum that triggers DNA synthesis. By contrast, DBcAMP added 8 hr after serum inhibited [3H] thymidine incorporation to the same extent as DBcAMP added at the same time as serum. This indicated that a step essential for DNA synthesis and occurring late in G1 was inhibited by high concentrations of 3′ : 5′-cyclic AMP.  相似文献   

3.
Mated CF1 (Carworth) female mice were sacrificed at 2 hr intervals between 29 and 43 hr after human chorionic gonadotrophin (HCG) administration. One- and two-cell eggs were incubated in [3H]thymidine for 1 hr. Labeled two-cell embryos were first observed at 31 hr and reached a maximum number at 35 hr. The S period is approximately 6 hr in duration. Although both blastomeres were labeled in most cases, embryos with only one labeled blastomere were more numerous at later times. In vitro labeling was corroborated by injecting [3H]thymidine directly into the isthmic portion of the oviduct. Embryos usually complete the second cleavage division 18–20 hr after onset of DNA synthesis. The cell cycle at the two-cell stage is thus characterized by a G1 of close to 1 hr, a 6 hr S, and a G2 of about 12 hr.Embryos developing in vitro frequently fail to progress beyond the two-cell stage. The block is not due to absence of DNA synthesis since these embryos were found to incorporate [3H]thymidine.  相似文献   

4.
The phosphorylation of thymidine, deoxycytidine, deoxyadenosine and deoxyguanosine was studied during the embryogenesis of the sea urchin Hemicentrotus pulcherrimus. [3H]Thymidine was taken up, phosphorylated and accumulated mostly as [3H]thymidine triphosphate in the early cleavage stage embryos. As the embryos developed, the formation of [3H]thymidine triphosphate decreased and most of the [3H]thymidine taken up by the blastulae remained be phosphorylated. When [3H]deoxycytidine was added to the cleaving embryos, the resultant labeled pool consisted of almost equal amounts of [3H]deoxycytidine monophosphate and [3H]deoxycytidine triphosphate. The formation of [3H]deoxycytidine monophosphate increased up to 10 hr following fertilization and then decreased, while the formation of [3H]deoxycytidine triphosphate decreased for 10 hr following fertilization and then gradually increased. [3H]Deoxyadenosine was rapidly phosphorylated to monophosphate derivative in the cleavage stage embryos. The formation of [3H]deoxyadenosine triphosphate increased rapidly after cleavage stage with a concomitant decrease of [3H]deoxyadenosine monophosphate. The activity of phosphorylation in [3H]deoxyguanosine to triphosphate derivative increased rapidly reaching a plateau 10 hr after fertilization. At this point, 80 % of the [3H]deoxyguanosine was recovered as [3H]deoxyguanosine triphosphate. Based on the above results, it was concluded that the profile of production of each deoxyribonucleoside triphosphate changed during the embryogenesis of the sea urchin, and the in vivo rate-limiting step of phosphorylation of the individual deoxyribonucleoside was assumed to be different.  相似文献   

5.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

6.
Replenishment of medium after 72 hr of growth of HeLa-S3 cells in dense suspension cultures increased [3H]-thymidine uptake into cells and incorporation into DNA, with the levels reaching a peak ~ 12 hr following medium change; β interferon inhibits the enhanced uptake of [3H]-thymidine and labeling of DNA in a dose-dependent manner. Some reduction in these processes is observed at a concentration as low as 1 u/ml, and ~ 75% inhibition at 640 u/ml. Kinetic analysis has revealed that the rate of labeling of the acid-soluble pool with [3H]-thymidine, measured either at 22°C, or 37°C, is reduced in interferon-treated (640 u/ml, 24 hr) HeLa-S3 cells. At 22°C, the initial rate of thymidine transport at a high (500 μM) thymidine concentration, determined within the first 30 sec of [3H]-thymidine addition was depressed by 44% in interferon-treated HeLa cells. At 37°C, labeled precursors accumulate in acid-soluble material for ~ 8 min after the addition of [3H]-thymidine, after which an apparent equilibrium level is attained. At this temperature, the rate of thymidine uptake and the apparent equilibrium level attained were depressed by 70% in interferon-treated HeLa cells. The reduced incorporation of [3H]-thymidine into DNA in interferon-treated HeLa-S3 cells can be largely explained by interferon inhibition of thymidine transport and phosphorylation.  相似文献   

7.
The present investigation showed by means of autoradiography that the cyanobacterium Microcystis wesenbergii did not incorporate [3H]thymidine at nanomolar concentrations, whereas its associated heterotrophic bacteria appearing in the gelatinous cover of the cyanobacterium became labeled. Several other tested cyaobacteria and algae did not incorporate [3H]thymidine.  相似文献   

8.
Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to [3H]thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of [3H]thymidine, concentrations as low as 0.1 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs was reduced, and at 10 nCi/ml the number of embryos developing to all three post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highest concentration tested (100 nCi/ml). When embryos were cultured from the 2-cell stage for 3 days in the presence of [3H]thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to [3H]thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages; the lowest concentration that interfered with development was 10 nCi/ml, and exposure at the morula stage was most detrimental to the subsequent development of embryos, particularly that of ICMs. The 24-h exposure of immunosurgically isolated ICMs to [3H]thymidine revealed that the high sensitivity of the ICM to [3H]thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate [3H]thymidine into the DNA.  相似文献   

9.
Primary cultures containing ≥99% neurons, ≥99% non-neuronal cells (glia), or both cell types were prepared from the sympathetic ganglia of 12-day chick embryos. Levels of cyclic AMP in the non-neuronal cells (~14 pmol/mg protein) were approximately 3-fold higher than levels in the neurons (~4 pmol/mg protein). Mixed cultures had concentrations of cyclic AMP which fell between the values measured for pure neuronal and pure non-neuronal cultures. The measured cyclic AMP values of mixed cultures were indistinguishable from values predicted by summing the expected contributions of the neurons and non-neuronal cells. Thus, contact between the neurons and non-neuronal cells in these mixed cultures did not appear to alter the level of cyclic AMP in either cell type. Neuronal-glial interactions, such as the specific neuronal stimulation of non-neuronal cell proliferation, occurred independently of any changes in the level of cyclic AMP in the mixed cultures. Cell density was varied in both pure and mixed cultures, and both cyclic AMP concentrations and amounts of [3H]thymidine incorporation into DNA were measured. The cyclic AMP content of the non-neuronal cells varied inversely with cell density. [3H]Thymidine incorporation was independent of cell density in both neuronal and non-neuronal cultures. Parallel density-dependent decreases in cyclic AMP concentration and [3H]thymidine incorporation were observed in mixed cultures as cell density was increased. The data suggest that there is no relationship between changes in rate of non-neuronal cell proliferation and cyclic AMP levels in these cultures.  相似文献   

10.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

11.
  • 1.1. Activity of topoisomerase I and incorporation of [3H]uridine and [14C]thymidine were monitored during light-induced sporulation of the slime mold Physarum polycephalun.
  • 2.2. A 4-fold transient increase of topoisomerase I activity but not of [3H]uridine or [14C]thymidine incorporation was observed after 42 hr of illumination with 6 hr impulses.
  • 3.3. The activity of topoisomerase I did not increase in the absence of light impulses. However, ca 5-fold increase of the activity was observed in dark when 100 μ M dibutyryl-cAMP was administered 12 hr before harvesting of plasmodia.
  • 4.4. Fluorodeoxyuridine and cycloheximide administered 36 hr after starting of the illumination cancelled the increase of the activity of topoisomerase I.
  • 5.5. After 7 days of the illumination, when fruiting bodies appeared, the activity of topoisomerase I dropped to about 15% of the initial value.
  相似文献   

12.
Tritium-labelled uridine ([3H]UdR) perturbs progression of L1210 cells through the mitotic cycle. the main effect manifests as a slowdown or arrest of a portion of cells in G2 and is already observed 2 hr after addition of 0.5–5.0 μCi/ml of [3H]UdR into cultures. At 2.5–5.0 μCi/ml of [3H]UdR a slowdown of cell progression through S is also apparent. Additionally, there is an increase in the number of cells with DNA values higher than 4C in cultures growing in the presence of [3H]UdR for 8–24 hr. A pulse of [3H]UdR of 2 hr duration labels predominantly (95%) cellular RNA. the first cell-cycle effects (G2 slowdown) are observed when the amount of the incorporated [3H]UdR is such that, on average there are fewer than thirty-six [3H] decays per cell which corresponds to approximately 12–19 rads of radiation. the S-phase slowdown is seen at a dose of incorporated [3H]UdR twice as high as that inducing G2 effects. the specific localization of [3H]UdR in nucleoli, peripheral nucleoplasm and in cytoplasm, as well as differences in the kinetics of the incorporation in relation to phases of the cell cycle are discussed in the light of the differences between the effects of [3H]UdR and [3H]thymidine. Mathematical modelling of the cell-cycle effects of [3H]UdR is provided.  相似文献   

13.
When rat thymocytes are cultured for 3 days in serum-free medium and are stimulated to divide by interleukin 2 (IL 2), concanavalin A, or sodium periodate oxidation, addition to the medium of 10–25 mMd-ribose, 2-deoxy-d-ribose, or N-acetyl-d-galactosamine inhibits by 40% or more the incorporation of [3H]thymidine. d-ribose and lectin-free IL 2 generated from sodium periodate oxidation of rat spleen cells were used to study the characteristics of this inhibition and to test possible mechanisms of inhibition. Viability of thymocytes cultured with d-ribose is similar to that of cells cultured without this sugar. In order to be inhibitory, d-ribose has to be added to the cultures within the first 24 hr, and the inhibition can be prevented if the sugar is removed 18–24 hr after the start of culture. d-Ribose does not block the absorption of IL 2 by unstimulated rat thymocytes or by concanavalin A-generated thymic or splenic blast cells. When thymocytes are cultured with d-ribose for 24 hr, inactivated with mitomycin C, and then cultured for 3 days with fresh mitogenically stimulated cells, [3H]thymidine incorporation into the latter is not altered. This suggests that the sugar does not generate suppressor cells or suppressor supernates. d-Ribose does not appear to be a general metabolic inhibitor since [3H]leucine incorporation into thymocyte proteins and the release of [3H]leucine into medium after a 2-hr. [3H]leucine pulse are not altered by d-ribose. Trivial or artifactual effects (nonspecific cytotoxicity, changes in thymidine transport, or changes in isotonicity of the culture medium) cannot explain the inhibition. A hypothetical mechanism of inhibition is discussed.  相似文献   

14.
The synthesis, deposition, and turnover of [3H]proline- and [3H]glucosamine-labeled basement membrane components have been studied in a system using organ cultures of embryonic rat parietal yolk sac tissues on a nutrient agar substrate. The morphologic and autoradiographic studies described in this report were correlated with the biochemical studies described in the companion paper (Minor et al., Develop. Biol.48, 1976). These studies showed that: (1) basement membrane (BM) was the only extracellular matrix synthesized in the cultures, (2) 10- to 30- μm thick layers of new BM were deposited during a 6-day culture period, (3) it was only the parietal endodermal cells that synthesized BM, (4) new BM was deposited only on the surface of existing BM, which was in contact with endodermal cells, (5) the amounts of new BM that accumulated were increased by a twice daily feeding schedule and decreased by the presence of trophoblast, (6) there was a notable difference in the redistribution of labeled components during a 6-day chase, and (7) [3H]glucosamine tended to localize in the Golgi complex, whereas [3H]proline was distributed throughout the cytoplasm of the endodermal cells.  相似文献   

15.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of [3H]uridine incorporation into RNA and [3H]leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10−21 M). Insulin stimulated the rate of [3H]thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100–1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H]thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of [3H]uridine, [3H]thymidine and [3H]leucine into their respective precursor pools is not responsible for the apparent stimulatation of RNA, DNA and protein synthesis.  相似文献   

16.
Keyhole limpet hemocyanin (KLH)-primed lymph node cell (LNC) populations were incubated with various amounts of KLH and the cellular incorporation of tritiated thymidine ([3H]TdR) or tritiated N6, O2′ dibutyryl cyclic AMP ([3H]DbcAMP) was determined. T LNC responded more vigorously than did complement receptor lymphocytes (CRL), i.e., B cells, at all KLH concentrations, during all time intervals examined, and in the presence or absence of normal rabbit serum (NRS). The depletion of adherent cells from KLH-primed LNC resulted in no significant decrease in KLH-induced incorporation of either [3H]TdR or [3H]DbcAMP in any of the LNC populations. Thus it appeared that variation among LNC populations in the incidence of macrophages did not account for the marked variation in their responses. Cultures containing equal numbers of T and CRL were induced to incorporate more [3H]TdR or [3H]DbcAMP than either population cultured separately or the sum of their individual responses. It was concluded that KLH-induced incorporation of these substances into primed, isolated LNC, was primarily manifested in the T-cell population. The synergism seen in cultures containing mixtures of T and CRL suggested that B cells are induced to incorporate [3H]TdR or [3H]DbcAMP in the presence of antigen and T-cell product(s). KLH-induced incorporation of [3H]TdR into KLH-primed LNC was inhibited by cholera enterotoxin (CT) and DbcAMP as previously reported. However, CT or DbcAMP inhibited this incorporation into T LNC to a greater extent than into CRL or unfractionated LNC.  相似文献   

17.
18.
《Cell differentiation》1978,7(1-2):83-88
DNA and non-histone chromosomal proteins (NHCP) of meristematic cells of maize primary roots were double labelled in vivo with [3H]- or [14C] thymidine and [14C]- or [3H]-tryptophan respectively. The ratio of labelled tryptophan to labelled DNA was followed during the transition of the meristematic cells of the root tip into the distal zones of finally differentiated cells. It was found that only 20% of the newly synthesized NHCP in the proliferating cells were turned over, while the rest were preserved and found as metabolically stable proteins in the zone of final differentiation. This result is consistent with the hypothesis that some NHCP remain permanently associated with chromatin of non-dividing differentiated cells in order to maintain the genomic characteristics of a given cellular type.  相似文献   

19.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

20.
The relationship between cell fusion, DNA synthesis and the cell cycle in cultured embryonic normal and dysgenic (mdgmdg) mouse muscle cells has been determined by autoradiography. The experimental evidence shows that the homozygous mutant myotubes form by a process of cell fusion and that nuclei within the myotubes do not synthesize DNA or undergo mitotic or amitotic division. The duration of the total cell cycle and its component phases was statistically the same in 2-day normal and mutant (mdgmdg) myogenic cultures with the approximate values: T, 21.5 hr; G1, 10.5 hr; S, 7.5 hr; and G2, 2.5 hr. In both kinds of cultures, labeled nuclei appeared in myotubes 15–16 hr after mononucleated cells were exposed to [3H]thymidine, and the rate of incorporation of labeled nuclei into multinucleated muscle cells was comparable in control and dysgenic cultures. Thus, homozygous mdgmdg muscle cells in culture are similar to control cells with respect to their mechanism of myotube formation and the coordinate regulation of DNA synthesis and the cell cycle during myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号