首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M A Brock 《Cryobiology》1987,24(5):412-419
Seasonal changes in the resistance of C57BL/6 mouse splenocytes to cryopreservation stress were expressed in both the recovery of viable cells and the levels of responses of T and B lymphocytes to mitogens in vitro. Single cell suspensions in 10% Me2SO were cooled at 1 degree C/min, the optimum velocity which was determined by using a range of cooling rates during January and May, the months of minimum and maximum recoveries of viable cells, respectively. After rapid thawing and washing, ethidium bromide-fluorescein diacetate staining delineated viable and nonviable cells. Cultures containing 0.5 X 10(6) viable cells were stimulated with the T lymphocyte mitogens, phytohemagglutinin and concanavalin A, and the B lymphocyte mitogen, lipopolysaccharide. Tritiated thymidine was added to each culture for the last 18 hr of the incubation period, and its incorporation by activated dividing cells was determined. Recoveries of viable cells were high from March through July and then declined to minimum levels in January and February. During the seasons of low recoveries, greater numbers of cells lysed in response to the freeze-thaw cycle. Activation of both T and B lymphocytes by mitogens was maximal in the spring and summer and then declined to only 40% of unfrozen control levels in October. The patterns of activation resembled those of the previously documented endogenous seasonal rhythms in levels of blastogenesis of unfrozen cells. These seasonal differences in cryopreservation properties of lymphocytes from inbred mice living under constant conditions reinforce the previously reported endogenous annual rhythmicity in cellular functions.  相似文献   

2.
A reported loss in the binding capacity to ConA of thawed human peripheral blood lymphocytes has been investigated using two methods. With acetyl-3H ConA there was an apparent loss in the total binding of ConA to 2 × 105 dye-excluding cells thawed from liquid nitrogen, after cooling with a two-step procedure of 10 min at ?26 °C in 5% DMSO. Using the same cooling method, this apparent loss of binding capacity was not confirmed when a Fluorescence Activated Cell Sorter was used to measure the binding of fluorescent labelled ConA to thawed cells that are shown to be within the light scatter range of unfrozen lymphocytes. This second method, therefore, shows that a large population of lymphocytes can be recovered after thawing without any loss of receptors for ConA. The loss of binding measured by the radioactive method may be due to damaged lymphocytes and also to the loss of the small numbers of residual granulocytes.  相似文献   

3.
L.Keith Miller 《Cryobiology》1978,15(3):345-349
In the adult tenebrionid beetle Upis ceramboides unusually low cooling rates are required to demonstrate maximum freezing tolerance, and a very slight change in rate can reduce survival from 100 to 0%. Freezing to ?50 °C results in 100% mortality at rates above 0.35 °C/min, but no injury is apparent if the cooling rate is 0.28 °C/min. The lower lethal temperature, determined with a cooling rate of 0.17 °C/min, is about ?60 °C. The maximum cooling rate which allows full survival is nearly identical to optimal cooling rates previously found for mouse embryos and some lymphocytes, but the striking sensitivity to very slight changes in rate is unique to Upis. Most studies dealing with insect freezing tolerance have utilized rates of 1 °C/min or faster, and the failure of some of these laboratory studies to observe freezing survival may be due to the use of lethal cooling rates.  相似文献   

4.
The factors that affect the survival of mouse lymphocytes throughout a procedure for storage at ?196 °C have been studied both for the improvement of recovery and the possible extension to the mouse system of cell selection by freezing. After thawing, the survival of cells cooled at different rates in dimethyl sulphoxide (DMSO, 5 or 10%, vv) was assessed from the [3H]thymidine incorporation in response to phytohaemagglutinin and concanavalin A. Before freezing the protection against freezing damage increased with time (up to 20 min) in DMSO (5%, vv) at 0 °C. Superimposed upon this effect was toxicity due to the DMSO. During freezing and thawing the cooling rate giving optimal survival was 8 to 15 °C/min for cells in DMSO (5%) and 1 to 3 °C/min for DMSO (10%). Omission of foetal calf serum was detrimental. Rapid thawing (>2.5 °C/min) was superior to slow thawing. After thawing dilution at 25 or 37 °C greatly improved cell survival compared with 0 °C; at 25 °C survival was optimal (75%) at a moderate dilution rate of 2.5 min for a 10-fold dilution in FCS (10%, vv) followed by gentle centrifugation (50g).Dilution damage during both thawing and post-thaw dilution may be due to osmotic swelling as DMSO and normally excluded solutes leave the cell. The susceptibility of the cell membrane to dilution damage may also be increased during freezing. The need to thaw rapidly and dilute at 25 °C after thawing is probably due to a decrease in dilution stress at higher temperatures. Optimisation of dilution procedures both maximised recovery and also widened the range of cooling rates over which the cells were recovered. These conditions increase the possibility of obtaining good recovery of a mixed cell population using a single cooling procedure. Alternatively, if cell types have different optimal cooling rates, stressful dilution may allow their selection from mixed cell populations.  相似文献   

5.
Sea urchin egg fertilization studied with a fluorescent probe (ANS)   总被引:2,自引:0,他引:2  
The rates of intracellular DNA synthesis at various temperatures between 39 ° and 31 °C were determined in hamster fibroblasts and HeLa cells by measuring average amounts of 3H-thymidine incorporated per cell in S phase per unit of time. The energy of activation and Q10 for intracellular DNA synthesis were calculated from the slopes of the relative rates of DNA synthesis in HeLa cells and hamster fibroblasts vs. time, plotted on Arrhenius coordinates. In both cell types the incorporation of thymidine into DNA is characterized by an energy of activation of 21 000 calories/mole and a Q10 of 2.94. The absolute rates of DNA synthesis were determined in hamster cells at various temperatures, with values ranging from 1.44 to 0.60 × 10?14 g DNA/ min/cell at 39 ° to 31 °C, respectively. The length of the S phase of the hamster cell was calculated over a 39 ° to 31 °C range, and found to be 5.0 to 11.9 h, respectively. It is concluded that the S phase length is partly determined by the rate of temperature-dependent DNA synthesis.  相似文献   

6.
Cell suspensions of carrot, Datura, tobacco and soybean subjected to ?20°C, ?70°C and ?196°C in the presence of a suitable cryoprotective agent, and stored for various lengths of time have been revived. After revival these cells divided to form callus masses. Direct immersion in liquid nitrogen invariably killed the cells, whereas cooling at the rate of 1 or 2°C/min, or pre-freezing briefly at ?20 and ?70°C, followed by freezing at ?196°C retained the viability. Depending on the plant species up to 70% of the cell clumps could withstand ultra-cooling. Tobacco and Datura cell suspensions were more sensitive to cold treatment than were those of carrot. Actively growing cell suspensions containing small cell-clumps revived rapidly, while filtered cell-suspensions of free cells only occasionally survived. Calli of tobacco and carrot obtained from frozen suspensions have been regenerated into plants.  相似文献   

7.
T Nei 《Cryobiology》1976,13(3):287-294
Morphological alterations of human red blood cell membranes were examined with the cells containing different concentrations of glycerol being subjected to rapid rates of cooling, approximately 104 and 105 °C/min, and subsequent rewarming. Small membrane defects, similar to holes, were observed in specimens frozen with and without 10% glycerol. Various degrees of roughness were found on the surface of the cells at all freezing rates tested. The membrane alterations were reduced with increasing glycerol concentration, although roughness also appeared on the surface of the cells in 30% glycerol suspensions, frozen rapidly, and rewarmed to ?80 or ?60 °C. The cell membrane surface texture correlated with the growth of intra- and extracellular ice particles. There was also a positive correlation between these alterations and post-thaw hemolysis. It is concluded, therefore, that morphological alterations appearing on the erythrocyte membranes may be a manifestation of freezing damage.  相似文献   

8.
The mechanisms by which single cells are injured during freezing are relatively well understood, but it is likely that additional factors apply to tissues and organs, factors that may be responsible for the poor suecess of attempts to cryopreserve complex multicellular systems. One such factor may be the formation of extracellular ice.
This study was designed to discover whether ice formation as such is detrimental to the contractile recovery of pieces of mammalian smooth muscle after storage at subzero temperatures. Strips of taenia coli muscle were equilibrated with 2.56 M Me2SO in a buffered solution, cooled at either 0.3 or 2 °C/min to ?21 °C and then held at this temperature in the frozen state. Other muscle strips were bathed in a solution the composition of which mimicked that of the unfrozen phase of the previous solution at ?21 °C; it contained 4.49 M Me2SO and 1.75 times the normal concentration of salts, and muscles equilibrated with this solution were also cooled at either 0.3 or 2 °C/min to ?21 °C, and then held unfrozen for the same length of time.It was shown that exposure to ?21 °C and the increased concentration of solutes had little effect on the contractile recovery of the muscles, whereas ice formation was damaging. Furthermore, the rate of cooling had a marked effect upon functional recovery in the frozen muscles, and this could be correlated with the known effect of these cooling rates on the pattern of ice formation in the tissue. The effect was also seen in muscles frozen at ?60 °C. Improved buffering increased the functional recovery of all groups, but the effect of ice, and of cooling rate in the presence of ice, was confirmed. These findings may have significant implications for attempts to cryopreserve complex tissues and organs.  相似文献   

9.
A microprocessor-controlled rate controller for use in cryopreservation   总被引:3,自引:0,他引:3  
G Baartz  M A Brock 《Cryobiology》1979,16(5):497-505
The design and operation of a microprocessor-controlled rate controller incorporated into a constant-rate cooling system used in the cryopreservation of cells is described. The controller differs from those currently available in that the actual temperature of the cell suspension being cooled is compared with a preselected ramp of the microprocessor. Differences between the two determine the opening of solenoid valves that permit entry of liquid N2 vapors into the freezing chamber. The heat of fusion, which is released as extracellular ice crystallizes, automates the opening of additional solenoid valves. The rapid entry of N2 vapors into the chamber cools the cell suspension, therefore restoring the programmed cooling rate. The functional recovery of murine splenic lymphocytes cooled at ?1.0 °C/min using this system exceeds the recoveries given in most other reports.  相似文献   

10.
Washed human erythrocytes were cooled at different rates from +37 °C to 0 °C in hypertonic solutions of either NaCl (1.2 m) or of a mixture of sucrose (40% wv) with NaCl (2.53% wv). Thermal shock hemolysis was measured and the surviving cells were examined for their mass and cell water content and also for net movements of sodium, potassium, and 14C-sucrose. The results were compared with those obtained from cells in sucrose (40% wv) initially, cooled at different rates to ?196 °C and rapidly thawed.The cells cooled to 0 °C in NaCl (1.2 m) showed maximal hemolysis at the fastest cooling rate studied (39 °C/min). In addition in the surviving cells this cooling rate induced the greatest uptake of 14C-sucrose and increase in cell water and cell mass and also entry of sodium and loss of cell potassium. A different dependence on cooling rate was seen with the cells cooled from +37 °C to 0 °C in sucrose (40% wv) with NaCl (2.53% wv). In this solution, survival decreased both at slow and fast cooling rates correlating with the greatest uptake of cell sucrose and increase in cell water. There was extensive loss of cell potassium and uptake of sodium at all cooling rates, the cation concentrations across the cell membrane approaching unity.The cells frozen to ?196 °C at different cooling rates in sucrose (40% wv) initially, also showed sucrose and water entry on thawing together with a loss of cell potassium and an uptake of cell sodium. More sucrose entered the cells cooled slowly (1.8 ° C/min) than those cooled rapidly (318 ° C/min).These results show that cooling to 0 °C in hypertonic solutions (thermal shock) and freezing to ?196 °C both induce membrane leaks to sucrose as well as to sodium and potassium. These leaks are not induced by the hypertonic solutions themselves but are due to the effects of the added stress of the temperature reduction on the membranes modified by the hypertonic solutions. The effects of cooling rate are explicable in terms of the different times of exposure to the hypertonic solutions. These results indicate that the damage observed after thermal shock or slow freezing is of a similar nature.  相似文献   

11.
The freeze-preservation of pollen is dependent on the interaction of several factors such as freezing rate, thawing rate, freeze-drying temperature and duration, storage temperature and environment and rehydration rates. Changes in any of these variables affects the others directly or indirectly.Rapid freezing of pollen at rates of approximately 200 °C/min maintains the highest degree of viable pollen in combination with rapid thawing rates of 218 °C/min. Rapid cooling and slow rewarming resulted in a substantial loss of pollen viability. This might indicate that intracellular ice crystals formed during rapid cooling perhaps grow into larger ice masses during slow rewarming or storage at temperatures above ?50 °C.The germinability of pollen freeze-dried at temperatures below ?50 °C was also prolonged over that of the controls. Germination values for unfrozen pollen stored for 30 days at 0–5 °C averaged 50% for lily and 20% for corn. Freeze-dried pollen stored for 30 days at the same temperature yielded considerably higher viability percentages for both lily and corn pollen. Drying time is an important factor, perhaps indicating that residual moisture is critical. Freeze-dried pollen can be stored at higher temperatures than frozen and control pollen. Freeze-dried material stored for five months at 0–5 °C, upon slow rehydration yielded intact grains which has average germination percentages of 25 for lily and 15 for corn. The same pollen upon rapid rehydration showed rupturing of 20–40% of the cells and practically no germination.  相似文献   

12.
A tissue culture assay has been used to measure the survival of murine lymphoma cells (L-cells) after freezing and thawing in the presence of 2 M glycerol or 1.6 M dimethyl sulfoxide. The effect of variations in cooling rate (0.1 to 10.0 °C/min) and warming rate (0.3 to 200 °C/min) were studied. It was found that survival exhibited a peak at the “conventional” combination of slow cooling and rapid warming (~1 and 200 °C/ min, respectively). It was also shown, however, that a second peak of similar magnitude occurred when the cells were cooled and rewarmed at 0.2-0.3 °C/min. These results are interpreted on the basis of current theories of freezing injury, stressing the importance of damage produced by the recrystallization of intracellular ice and by solute loading. The ultraslow rates of cooling and rewarming which produced the second survival peak are practicable for whole organs, and their potential importance for organ cryopreservation is apparent.  相似文献   

13.
T Nei 《Cryobiology》1976,13(3):278-286
The extent of hemolysis of human red blood cells suspended in different concentrations of glycerol and frozen at various cooling rates was investigated on the basis of morphological observation in the frozen state. Hemolysis of the cells in the absence of glycerol showed a V-shaped curve in terms of cooling rates. There was 70% hemolysis at an optimal cooling rate of approximately 103 °C/min and 100% hemolysis at all other rates tested. Morphologically, a lower than optimal cooling rate resulted in cellular shrinkage, while a higher than optimal rate resulted in the formation of intracellular ice.The cryoprotective effect of glycerol was dependent upon its concentration and on the cooling rate. Samples frozen at 103 and 104 °C/min showed freezing patterns which differed from cell to cell. The size of intraand extracellular ice particles became smaller, and there was less shrinkage or deformation of cells as the rate of cooling and concentration of glycerol were increased.There was some correlation between the morphology of frozen cells and the extent of post-thaw hemolysis, but the minimum size of intracellular ice crystals which might cause hemolysis could not be estimated. As a cryotechnique for electron microscopy, the addition of 30% glycerol and ultrarapid freezing at 105 °C/min are minimum requirements for the inhibition of ice formation and the prevention of the corresponding artifacts in erythrocytes.  相似文献   

14.
Red blood cells were frozen in small capillaries down to ?196 °C at different linear cooling rates with or without the cryoadditive HES; the thawing rate was 3000 or 6500 °C/min. Hematocrit and hydroxyethyl starch concentration varied independently. The hemolysis of red blood cells was determined photometrically after 250-fold dilution and compared to totally hemolyzed samples. The typical U-shaped curves for hemolysis as a function of the cooling rate were obtained for all cell suspensions investigated. Relative optimum cooling rates were determined for the respective combinations of HES and hct. The results show that increasing hct causes an increased hemolysis; increased HES concentration CHES reduces the optimum cooling rate Bopt; increased hct results in higher optimal cooling rates. The findings allow one to establish a linear correlation of the HES concentration and the optimum cooling rates when the dilution of the extracellular medium by the cell water efflux during freezing is taken into account. A comparison with results from larger volumes frozen (25 ml) shows that the established relationship between hematocrit, HES concentration, and optimal cooling rate remains valid.  相似文献   

15.
Adult rat heart cells were exposed to two-step cooling to ?196 °C with different holding periods at different subzero temperatures between both steps. The highest survival based on the percentage of trypan blue-excluding cells was 25% with 10% DMSO and a holding period of 6 min, and 21% with 15% DMSO and a holding period of 30 min. The highest survival based on morphological intactness was about 10%; there was no difference in results after cooling with 10 and 15% DMSO, and after holding between 2 and 30 min. The optimal survival based on the percentage of contracting cells was 52%, with 15% DMSO and a holding period of 2 min.When the holding period was replaced by a programmed cooling stage, the results could be improved. With this threestep cooling method, the optimal values, based on the number of trypan blue-excluding, intact, and contracting cells, were 40, 32, and 60%, respectively. It appeared that in the presence of 10% DMSO, which provided better survival than 5 and 15%, no significantly different results were obtained when the starting temperatures of the second cooling step varied between ?10 and ?20 °C, when the end temperatures varied between ?30 and ?60 °C, or when the cooling rates of the second cooling step varied between 0.1 and 1 °C/min. Three-step cooling provided similar results as linear cooling from 0 to ?100 °C, followed by rapid cooling to ?196 °C.  相似文献   

16.
WHEN cells and organized tissues are cooled to ?79° C (solid CO2), ice-crystal formation and its associated damaging effects can be prevented by progressively replacing up to 60% of the tissue water with the non-electrolyte dimethyl sulphoxide (DMSO). Farrant1, who suggested this method, found that the functional recovery of smooth muscle cooled in Krebs-based DMSO was better than that obtained with conventional techniques involving freezing and thawing, but the contractility of guinea-pig smooth muscle is still relatively poor after cooling to ?79° C in unfrozen Krebs-based media2, possibly because of the ionic imbalances such as those which arise when smooth muscle is cooled in normal Krebs solution3,4.  相似文献   

17.
The two major skin packaging formats for transplantable human skin, flat — folded and rolled — cylindrical, were evaluated with respect to the control of cooling rate, warming rate, and storage efficiency. Experiments were performed with six amounts of skin ranging from 7.6 × 20 cm (0.17 ft2) up to 7.6 × 120 cm (1.00 ft2).Contrary to previously published statements, when skin packaged in either of the two formats is cooled at an uncontrolled rate in a low temperature (?70 °C) mechanical refrigerator or dry-ice chest, the smaller skin dimensions cool too rapidly (up to ?24 °C min?1), while the packets containing larger skin dimensions exhibit prolonged exothermic temperature plateaus (8–44 min), allowing the possibility of significant crystallization damage to the cells. On the other hand, controlled-rate cooling of ?1 °C min?1 can be obtained using a temperature-feedback controlled-rate freezer along with a flat skin packet geometry. Much less control is obtained if a cylindrical skin packet geometry is used with a controlled-rate freezer.Skin processed in the flat format is capable of being warmed by water immersion about 10 times more quickly than equivalent amounts of skin processed in the rolled format. The longer warming times associated with the cylindrical package format (3.5–25 min, depending upon the amount of skin per packet) result from extended endothermic temperature plateaus in the subzero region, which have been shown to damage skin cells and reduce their subsequent viability. The short warming times (0.25–3.5 min) associated with the flat skin package format are devoid of such complications, since they are within the needed warming rate of 50 °C–70 °C min?1.Package geometry affects the storage requirements of transplantable skin. The flat format possesses a two- to threefold advantage in storage efficiency. Capital equipment and liquid nitrogen usage for storage is drastically decreased if a flat package format is chosen.  相似文献   

18.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

19.
An 125IUDR incorporation assay is described which has been used to assess cell viability after freeze-thawing. A ?10 °C/ min program and a ?1 °C/min program, to be used on a Cryoson BV4 biological freezer, were designed to minimize the latent heat plateaus. These programs and a Knight and Farrant two-step program were compared with respect to survival of cells obtained from patients with malignant ascites and the established Chang cell line, originally from normal human liver. All the programs tested gave survival rates above 44% and the ?5 °C/min program gave the best overall rates.  相似文献   

20.
Granulocytes isolated by counterflow centrifugation elutriation (CCE) from leukapheresed dog blood, frozen in liquid nitrogen at ?196 °C, were studied. The effects of long-term cryopreservation on cell recovery and in vitro function were detertmined. In seven separate experiments, an average of 1.7 × 109 granulocytes were obtained. The white cell differential count was 91% granulocytes and 9% mononuclear cells. There was less than 5% red cells presrent and no platelets. Granulocytes were placed in Hemoflex bags and mixed slowly with equal volumes of sterile ice-cold hyperosmolar cryoprotectant buffer to make a final composition of 5% dimethylsulfoxide (DMS), 6% hydroxyethyl starch (HES), and 4% bovine serum albumin (BSA), pH 7.1. Total volumes of 40 ml were frozen at a cooling rate of 4 °C per minute and stored for periods of 1, 34, 60, 90, and 132 weeks in liquid nitrogen at ?196 °C. Thawing was done at a rate of 190 ° per minute to 10 °C. The recovery of cells was 95%, 105%, 100%, 100%, and 88% respectively. Ethidium bromide exclusion, indicative of viable nuclei, was 91%, 81%, 94%, 89%, and 80% respectively. Virtually all thawed cells ingested opsonized Fluolite particles, but the number ingested was approximately one-half that of prefreeze values. Thawed cells also demonstrated superoxide anion synthesis at rates approximating those in unfrozen granulocytes. These results indicate that dog granulocytes obtained by leukapheresis may be preserved in liquid nitrogen at ?196 °C with high cellular recovery and at least 50% phagocytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号