首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spreading behaviour of dissociated hypoblast cells on and besides a band of aligned fibrils associated with the basal lamina of the epiblast was investigated by the use of scanning electron microscopy. A horse-shaped band of aligned fibrils, first demonstrated by Wakely and England (1979), is present during the gastrulation stages of chicken embryos on the ventral side of the epiblast at the cranial and lateral borders of the area pellucida. The basal lamina of the area pellucida situated inside the fibrillar band enables the spreading and probably the locomotion of dissociated cells, which appeared as polarized cells. Numerous cells were also found on the fibrillar band, and these cells lacked distinct lamellae and a polarized shape. Extensions of the cells contacted the extracellular fibrils and, at these sites of contact, the pattern of the fibrils was frequently deformed. From these observations and from previous results emerged the concept that spreading and locomotion of dissociated hypoblast cells, as well as single mesoblast cells and healing hypoblast epithelium, are inhibited by the band of extracellular fibrils, which acts as a physical barrier. The cell biological basis of the mechanism by which extracellular fibrils associated with the basal lamina arrest the migration of hypoblast and mesoblast cells, but guide the migration of primordial germ cells, is discussed.  相似文献   

2.
The ultrastructure of the early chick embryo was investigated, using scanning (SEM) and transmission electron microscopy (TEM). Eggs were obtained from the shell gland by injecting hens intravenously with a synthetic prostaglandin or arginine vasopressin. Embryos were examined during late cleavage (stages IV–VI, Eyal-Giladi and Kochav, '76), formation of the area pellucida (stages VII–XI), and formation of the hypoblast (stages X–XIV). SEM highlighted the reduction in cell number at the underside of the embryo during formation of the area pellucida although it became apparent that the thickness of the embryo is not reduced to a single layer of cells at stage X. In addition, blastomeres at the perimeter of embryos (stages V–VI) project filopodial extensions onto a smooth membrane that separates the sub-embryonic cavity from the yolk. During hypoblast formation, epiblast cells generate stellate projections at their basal aspect, thus providing a meshwork for the advancing secondary hypoblast cells. By stage XII the epiblast was one cell thick and reminiscent of a columnar epithelium when viewed transversely. Cells of the deep portion of the posterior marginal zone were distinguished morphologically in the stage XII embryo by their many cell surface projections and ruffled appearance. Blastomeres at the perimeter of stage V–VI embryos projected filopodial extensions onto a smooth membrane which separates the sub-embryonic cavity from the yolk. This membrane is presumed to be confluent with the cytolemma. Evidence is presented demonstrating the presence of intracellular membrane-bound droplets which are hypothesised to contain sub-embryonic fluid. © 1993 Wiley-Liss, Inc.  相似文献   

3.
To obtain a reliable molecular probe to trace the origin of germ cell lineages in birds, we isolated a chicken homolog (Cvh) to vasa gene (vas), which plays an essential role in germline formation in Drosophila. We demonstrate the germline-specific expression of CVH protein throughout all stages of development. Immunohistochemical analyses using specific antibody raised against CVH protein indicated that CVH protein was localized in cytoplasm of germ cells ranging from presumptive primordial germ cells (PGCs) in uterine-stage embryos to spermatids and oocytes in adult gonads. During the early cleavages, CVH protein was restrictively localized in the basal portion of the cleavage furrow. About 30 CVH-expressing cells were scattered in the central zone of the area pellucida at stage X, later 45-60 cells were found in the hypoblast layer and subsequently 200-250 positive cells were found anteriorly in the germinal crescent due to morphogenetic movement. Furthermore, in the oocytes, CVH protein was predominantly localized in granulofibrillar structures surrounding the mitochondrial cloud and spectrin protein-enriched structure, indicating that the CVH-containing cytoplasmic structure is the precursory germ plasm in the chicken. These results strongly suggest that the chicken germline is determined by maternally inherited factors in the germ plasm.  相似文献   

4.
The progressive development of the turkey embryo from first cleavage through hypoblast formation was examined in order to determine the applicability of a chicken embryo staging procedure. It was concluded that the temporal and spatial events associated with the development of the early turkey embryo are sufficiently different from those of the chicken embryo to warrant a separate staging procedure. Cleavage is asynchronous and often results in asymmetrical segmentation. Unlike the chicken embryo, which at oviposition has already formed the area pellucida and area opaca and is classified as a Stage X embryo, the turkey embryo at oviposition is only at the beginning of area pellucida formation and is classified as a Stage VII embryo. After about 3 hr of incubation and prior to completion of the area pellucida, hypoblast formation begins at the posterior end, thereby establishing the bilaterally symmetrical pattern of the embryo. When viewed from the dorsal surface, an opaque region is observed at the center of the area pellucida. This opacity is unique to the turkey embryo and is referred to as the area alba. When viewed from the ventral surface, the area alba appears to be composed of large whitish cells. To conclude, the rate of turkey embryo development through the completion of hypoblast formation, which consists of 11 stages, lags behind that of the chicken. Furthermore, the organization as well as origin of the area pellucida and hypoblast observed in the turkey embryo differ from that of the chicken embryo. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Summary Scanning electron microscopy (SEM) indicates that the primary hypoblast forms beneath the area pellucida during the first 8 h of incubation mainly by establishment of contact among cells which move downward out of the epiblast. This movement, polyingression, begins posteriorly and continues antero-laterally during the period of primary hypoblast formation. Polyingression produces many pits and possibly a crescentic fold in the embryo upper surface with corresponding cell clusters and a ridge on the lower surface. Fixationin situ helps prevent formation of artifactual folds and wrinkles facilitating interpretation of the SEM images.Formation of intercellular adhesions which lead to development of an epithelial primary hypoblast proceeds in a posterior to anterior direction along with polyingression. This epithelialization begins with elaboration of numerous filamentous processes by cells as they arrive from the epiblast, and continues with ongoing input of cells, merging of cells and cell clusters, and cell flattening. We have also shown (Weinberger and Brick 1982) that proliferation of ingressing cells provides additional cells for hypoblast development.  相似文献   

6.
Nucleolar development in the cleaving chick germ up to the formation of the primary hypoblast was followed through a series of well-defined uterine and early incubated stages both by light and electron microscopy. Well-established criteria of nucleolar morphology were used for determining the developmental stage of onset of rRNA synthesis. By these criteria rRNA synthesis was first observed at midcleavage in uterine stage VII [1] germs. This could be correlated with the first morphogenetic event—the posterio-anteriorly orientated formation of the area pellucida which results in a bilaterally symmetrical blastoderm.  相似文献   

7.
The temporal and spatial pattern of segregation of the avian germline from the formation of the area pellucida to the beginning of primitive streak formation (stages VII–XIV, EG&K) was investigated using the culture of whole embryos and central and peripheral embryo fragments on vilelline membranes at stages VII–IX, immunohistological analysis of whole mount embryos and sections with monoclonal antibodies MC-480 against stage-specific embryonic antigen-1 (SSEA-1) and EMA-1, and with the culture of dispersed blastoderms at stages IX–XIV with and without an STO feeder layer. Whole embryos at intrauterine stages developed up to the formation of the primitive streak despite the absence of area pellucida expansion. Primordial germ cells (PGCs) appeared in the cultures of whole embryos and only in central fragments containing a partially formed area pellucida at stages VII–IX. When individual stage IX–XIV embryos were dispersed and cultured without a feeder layer, 25–45 PGCs/embryo were detected only with stage X–XIV, but not with stage IX blastoderms. However, the culture of dispersed cells from the area pellucida of stages IX–XIII on STO feeder layers yielded about 150 PGCs/embryo. The carbohydrate epitopes recognized by anti-SSEA-1 and EMA-1 first appeared at stage X on cells in association with polyingressing cells on the ventral surface of the epiblast and later on the dorsal surface of the hypoblast. The SSEA-1-positive hypoblast cells gave rise to chicken PGCs when cultured on a feeder layer of quail blastodermal cells. From these observations, we propose that the segregation and development of avian germline is a gradual, epigenetic process associated with the translocation of SSEA-1/EMA-1-positive cells from the ventral surface of the area pellucida at stage X to the dorsal side of the hypoblast at stages XI–XIV. © 1996 Wiley-Liss, Inc.  相似文献   

8.
An antiserum against quail 7 day gonadal germ cells was found to react specifically with gonadal germ cells of both sexes. Transverse sections from a range of early quail developmental stages were submitted to the antibody PAP reaction. Blastodiscs from the earliest uterine stages (II to X E.G. & K) reacted very strongly, while the overall reaction gradually decreased in older blastoderms. At stage XIII both epiblast and hypoblast were weakly stained, but some large, PGC-like cells stained intensively. During gastrulation (PS formation) the reaction of the epiblast disappears quicker than that of the hypoblast. The newly formed mesoderm and entoderm do not react at all and the reaction gradually becomes limited mainly to the PGCs and somewhat to the primary hypoblast which is moving into the germinal crescent. The widely spread reaction at the early stages is thus gradually being restricted to the PGCs.  相似文献   

9.
Summary Recently fibronectin was shown to appear in the development of the chick for the first time as a thin band on the epiblastic side facing the hypoblast just prior to primitive streak formation. It was thus suggested that fibronectin might be instrumental in the migration of cells that lead to axis formation during primitive streak formation. In the present work we have examined simultaneously for the presence of fibronectin and the specific basement membrane glycoprotein laminin during primitive streak formation using immunofluorescence methods. Laminin was found to be expressed between the epiblast and the hypoblast of stage XIII1 chick blastoderms. During the immediately following process of streak formation the laminin was found to be continuously detectable throughout the area covered by the hypoblast, but disrupted on the streak area. Fibronectin was found to co-distribute with laminin in stage XIII and in the early primitive streak chick blastoderms. It is concluded that at stage XIII laminin and fibronectin form part of a basement membrane that is partially disrupted during the immediately following process of primitive streak formation in order to allow the migration of the streak-forming epiblastic cells during this morphogenetic process.  相似文献   

10.
Studies in Xenopus laevis and zebrafish suggest a key role for beta-catenin in the specification of the axis of bilateral symmetry. In these organisms, nuclear beta-catenin demarcates the dorsalizing centers. We have asked whether beta-catenin plays a comparable role in the chick embryo and how it is adapted to the particular developmental constraints of chick development. The first nuclear localization of beta-catenin is observed in late intrauterine stages of development in the periphery of the blastoderm, the developing area opaca and marginal zone. Obviously, this early, radially symmetric domain does not predict the future organizing center of the embryo. During further development, cells containing nuclear beta-catenin spread under the epiblast and form the secondary hypoblast. The onset of hypoblast formation thus demarcates the first bilateral symmetry in nuclear beta-catenin distribution. Lithium chloride exposure also causes ectopic nuclear localization of beta-catenin in cells of the epiblast in the area pellucida. Embryos treated before primitive streak formation become completely radialized, as shown by the expression of molecular markers, CMIX and GSC. Lithium treatments performed during early or medium streak stages cause excessive development of the anterior primitive streak, node and notochord, and lead to a degeneration of prospective ventral and posterior structures, as shown by the expression of the molecular markers GSC, CNOT1, BMP2 and Ch-Tbx6L. In summary, we found that in spite of remarkable spatiotemporal differences, beta-catenin acts in the chick in a manner similar to that in fish and amphibia.  相似文献   

11.
Appearance of primordial germ cells (PGCs) in young chick blastoderms was investigated by the cultivation of only the epiblast or hypoblast. Presumptive PGCs exist in the epiblast before primitive-streak formation. They translocate gradually to the lower layer during early stages of primitive-streak formation, though substantial number of presumptive PGCs remain in the upper layer. The existing primary hypoblast under the epiblast is dispensable for the further differentiation of the PGCs.  相似文献   

12.
Fibronectin expression was studied and found not to be present during the shedding process of stage VII chick embryos which indicates that fibronectin is not relevant during the implementation of the gravity-determined process of symmetrization. Fibronectin was detected, however, at the later stage XIII just prior to streak formation as a thin fluorescent sheet on the epiblastic side facing the hypoblast suggesting that it might be involved in the specific interactions that occur between epiblast and hypoblast and that lead to axis formation. Cultures of either epiblastic or hypoblastic chick cells indicate that both types of cells are capable of autonomous expression of fibronectin under in vitro conditions.  相似文献   

13.
The present report describes Lucifer Yellow (LY) transfer between the syncytial layer of the yolk cell (YSL) and blastodermal cells during epiboly in the teleost fish Barbus conchonius. The fate of a group of labeled cells is described until germ layer formation. At the onset of epiboly, LY seems to be transferred from the YSL to all blastodermal cells. Between 10% and 40% epiboly, dye-coupling appears to be restricted to the marginal region. Within 60 min individually labeled cells are distributed among unlabeled cells within the blastoderm. Between 40% and 60% epiboly, we observed a ring-shaped group of labeled cells, which probably have involuted during early gastrulation. Consequently, this cell group may correlate with the leading edge of the hypoblast layer within the germ ring. At 60% epiboly and later, the blastodermal cells are dye-uncoupled from the YSL. A gradual translocation of the ring-shaped hypoblast towards a dorsally located bar-like structure is observed between 50% and 100% epiboly. At 100% epiboly, fluorescent cells were located in contact with the YSL within the embryo proper, with the brightest fluorescence in the future head region. The translocation is due to dorsalwards convergent cell movements during the gastrulation process. The appearance of the hypoblast as a dye-coupled cell layer may correlate with some restriction in cell fate since the hypoblast differs in fate from the epiblast.  相似文献   

14.
The marginal zone of the chick embryo has been shown to play an important role in the formation of the hypoblast and of the primitive streak. In this study, time-lapse filming, fate mapping, ablation and transplantation experiments were combined to study its contribution to these structures. It was found that the deep (endodermal) portion of the posterior marginal zone contributes to the hypoblast and to the junctional endoblast, while the epiblast portion of the same region contributes to the epiblast of the primitive streak and to the definitive (gut) endoderm derived from it. Within the deep part of the posterior marginal zone, a subpopulation of HNK-1-positive cells contributes to the hypoblast. Removal of the deep part of the marginal zone prevents regeneration of the hypoblast but not the formation of a primitive streak. Removal of both layers of the marginal zone leads to a primitive streak of abnormal morphology but mesendodermal cells nevertheless differentiate. These results show that the two main properties of the posterior marginal zone (contributing to the hypoblast and controlling the site of primitive streak formation) are separable, and reside in different germ layers. This conclusion does not support the idea that the influence of the posterior marginal zone on the development of axial structures is due to it being the source of secondary hypoblast cells.  相似文献   

15.
During vertebrate gastrulation, highly coordinated cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. In zebrafish, silberblick (slb)/wnt11 regulates normal gastrulation movements by activating a signalling pathway similar to the Frizzled-signalling pathway, which establishes epithelial planar cell polarity (PCP) in Drosophila. However, the cellular mechanisms by which slb/wnt11 functions during zebrafish gastrulation are still unclear. Using high-resolution two-photon confocal imaging followed by computer-assisted reconstruction and motion analysis, we have analysed the movement and morphology of individual cells in three dimensions during the course of gastrulation. We show that in slb-mutant embryos, hypoblast cells within the forming germ ring have slower, less directed migratory movements at the onset of gastrulation. These aberrant cell movements are accompanied by defects in the orientation of cellular processes along the individual movement directions of these cells. We conclude that slb/wnt11-mediated orientation of cellular processes plays a role in facilitating and stabilising movements of hypoblast cells in the germ ring, thereby pointing at a novel function of the slb/wnt11 signalling pathway for the regulation of migratory cell movements at early stages of gastrulation.  相似文献   

16.
The main aim of the gastrulation process is commonly regarded to be the generation of the definitive germ layers known as mesoderm, endoderm and ectoderm. Here we discuss how the topography of gene expression, cellular migration and proliferative activity in the preliminary germ layers (hypoblast and epiblast) of the rabbit embryo reveal the sequence of events that establishes the three major body axes. We present a testable model in which a combination of cellular movement in the hypoblast with a morphogen gradient created by the (extraembryonic) trophoblast creates morphological polarity in the embryo and, hence, the co-ordinates for germ layer formation.  相似文献   

17.
The temporal limits of axis determination as well as the correlation between axis determination and the appearance of the area pellucida were investigated in 10-hr aborted uterine eggs. Between 14 and 16 hr of uterine age the axis of the blastodisc can be changed by altering its spatial position. Axis determination is a gradual process correlated with the morphogenetic process of the formation of the area pellucida. Changes in polarity are accompanied by the formation of a new area pellucida or the shifting of the center of the first area pellucida to one side.  相似文献   

18.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

19.
Axis formation is a highly regulated process in vertebrate embryos. In mammals, inductive interactions between an extra-embryonic layer, the visceral endoderm, and the embryonic layer before gastrulation are critical both for anterior neural patterning and normal primitive streak formation. The role(s) of the equivalent extra-embryonic endodermal layer in the chick, the hypoblast, is still less clear, and dramatic effects of hypoblast on embryonic gene expression have yet to be demonstrated. We present evidence that two genes later associated with the gastrula organizer (Gnot-1 and Gnot-2) are induced by hypoblast signals in prestreak embryos. The significance of this induction by hypoblast is discussed in terms of possible hypoblast functions and the regulation of axis formation in the early embryo. Several factors known to be expressed in hypoblast, and retinoic acid, synergistically induce Gnot-1 and Gnot-2 expression in blastoderm cell culture. The presence of retinoic acid in prestreak embryos has not yet been directly demonstrated, but exogenous retinoic acid appears to mimic the effects of hypoblast rotation on primitive streak extension, raising the possibility that retinoid signaling plays some role in the pregastrula embryo.  相似文献   

20.
The ventral surface of the deep layer of gastrulating quail and chick embryos was examined using scanning electron microscopy. On the basis of cell protrusions, three or four different cell types were recognized. Cells covered with microplicae were found in the caudal region of the germ and as a narrow band extending along the lateral and anterior borders of the area pellucida. Cells covered with microvilli were found in a horseshoe-shaped zone in the anterior part of the germ. Beneath the rostral end of the primitive streak, the flattened deep-layer cells exhibited intercellular ridges and few microvilli. This area was surrounded by cells that usually had extended microvilli. The pattern of these cell types is discussed in relation to the formation of the different tissues that compose the deep layer in gastrulating embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号