首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.  相似文献   

4.
5.
6.
Metallothioneins (MTs) are small, cysteine-rich proteins that bind heavy metals which induce their synthesis. Tissue fractionation of embryos at pluteus stage previously demonstrated that in the absence of added zinc, basal expression of MT mRNA is confined to ectoderm, whereas induction by zinc results in increased expression in the endoderm + mesoderm tissue fraction. Using in situ hybridization we now show that expression in the pluteus larva is restricted almost exclusively to the single cell type comprising the aboral ectoderm. Induction by Zn results in a marked accumulation of MT mRNA in gut and oral ectoderm to levels at least as high as that in aboral ectoderm. MT mRNA is also expressed in presumptive aboral ectoderm at earlier stages of normal development. In addition it is transiently expressed at variable levels in oral ectoderm and, to a lesser extent, in presumptive gut.  相似文献   

7.
8.
9.
Skeletogenesis in the sea urchin embryo   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
Primary differentiation in sea urchin embryos, animalized by zinc, has been gauged by the formation of characteristic endodermal and mesodermal tissue derivatives and by the accumulation of the ectoderm-specific Spec 1 mRNA. Increasing the dosage of zinc diminishes the differentiation of secondary mesenchyme, primary mesenchyme, endoderm, and ectoderm, in decreasing order. Treatment is effective only during the blastula stages, involving successive periods of sensitivity for these tissues. Removal of zinc with chelator results in the resumption of differentiation to increasing degree for this series of tissues. The developmental initiation of Spec 1 gene expression, normally at the earliest blastula stage, can be delayed by zinc for at least 30 hr before being implemented by treatment of the animalized embryos with a chelator. We conclude (1) that those processes in the blastula which are required for differentiation and are suppressed by zinc are distinguishable from the determinative processes, which are not affected by the animalizing agent and occur earlier during midcleavage; (2) that animalization by zinc involves a graded failure of primary tissues to form; and (3) that animalization involves a pause in the schedule of differentiation, which can be reinstated by removal of the animalizing agent, thereby providing a survival value inherent in a flexible schedule of development.  相似文献   

12.
Fibronectin in the developing sea urchin embryo   总被引:3,自引:1,他引:2       下载免费PDF全文
The presence of fibronectin in developing sea urchin embryos was studied uing immunofluorescence staining. The fluorescence pattern indicates that fibronectin is found on the cell surfaces and between cells in the blastula and gastrula stages, indicating that it plays a role in cell adhesion. Its presence on invaginating cells also suggests its involvement in morphogenesis during early development.  相似文献   

13.
In Xenopus and Drosophila, the nucleocytoplasmic ratio controls many aspects of cell-cycle remodeling during the transitory period that leads from fast and synchronous cell divisions of early development to the slow, carefully regulated growth and divisions of somatic cells. After the fifth cleavage in sea urchin embryos, there are four populations of differently sized blastomeres, whose interdivision times are inversely related to size. The inverse relation suggests nucleocytoplasmic control of cell division during sea urchin development as well. To investigate this possibility, we developed a mathematical model based on molecular interactions underlying early embryonic cell-cycle control. Introducing the nucleocytoplasmic ratio explicitly into the molecular mechanism, we are able to reproduce many physiological features of sea urchin development.  相似文献   

14.
15.
16.
Various stresses, including exposure to cold or heat, can result in a sharp increase in pigmentation of sea urchin embryos and larvae. The differentiation of pigment cells is accompanied by active expression of genes involved in the biosynthesis of naphthoquinone pigments and appears to be a part of the defense system protecting sea urchins against harmful factors. To clarify numerous issues occurring at various time points after the cold injury, we studied the effect of shikimic acid, a precursor of naphthoquinone pigments, on cell viability and expression of some pigment genes such as the pks and sult before and after freezing the cultures of sea urchin embryo cells. The maximum level of the pks gene expression after a freezing–thawing cycle was found when sea urchin cells were frozen in the presence of trehalose alone. Despite naphthoquinone pigments have been reported to possess antioxidant and cryoprotectant properties, our data suggest that shikimic acid does not have any additional cryoprotective effect on freezing tolerance of sea urchin embryo pigment cells.  相似文献   

17.
18.
Properties of isolated chromatin from sea urchin embryo   总被引:6,自引:0,他引:6  
  相似文献   

19.
Matrix metalloproteases of the developing sea urchin embryo   总被引:2,自引:0,他引:2  
Abstract. A distinct group of metalloproteases has been identified in the developing sea urchin embryo by gelatin substrate gel zymography, a highly sensitive protease detection assay. The developing Arbacia embryo exhibited four prominent bands of gelatinase activity with apparent molecular masses of 55, 50, 42 and 38 kDa. The activity of the 55, 42 and 38 kDa tissue gelatinases increased and that of the 50 kDa tissue gelatinase decreased during embryonic development. All four enzymes were EDTA- and 1,10-phenanthroline sensitive and phenyl methyl sulphonyl fluoride (PMSF) insensitive. None of the enzymes had detectable caseinolytic activity in casein substrate gels. Although the Arbacia enzymes possessed a number of properties that are characteristic of the mammalian matrix metalloprotease family, they did not appear to be converted to lower molecular weight forms by organomercurial treatment and are distinct in this aspect. The Arbacia metalloproteases are candidate enzymes for the tissue and matrix remodeling that occurs during sea urchin embryo development.  相似文献   

20.
Abstract. A distinct group of metalloproteases has been identified in the developing sea urchin embryo by gelatin substrate gel zymography, a highly sensitive protease detection assay. The developing Arbacia embryo exhibited four prominent bands of gelatinase activity with apparent molecular masses of 55, 50, 42 and 38 kDa. The activity of the 55, 42 and 38 kDa tissue gelatinases increased and that of the 50 kDa tissue gelatinase decreased during embryonic development. All four enzymes were EDTA- and 1,10-phenanthroline sensitive and phenyl methyl sulphonyl fluoride (PMSF) insensitive. None of the enzymes had detectable caseinolytic activity in casein substrate gels. Although the Arbacia enzymes possessed a number of properties that are characteristic of the mammalian matrix metalloprotease family, they did not appear to be converted to lower molecular weight forms by organomercurial treatment and are distinct in this aspect. The Arbacia metalloproteases are candidate enzymes for the tissue and matrix remodeling that occurs during sea urchin embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号