首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze the role of the activation potential (a positive shift of the membrane potential which occurs following sperm attachment) in fertilization and development of the sea urchin egg, unfertilized Lytechinus variegatus eggs were voltage clamped at membrane potentials (Em) from +20 to ?90 mV, and then inseminated. Either a fast two electrode voltage clamp, or a single electrode switched voltage clamp was used. The clamp was maintained for 3 to 15 min after initiation of a conductance increase. At Em more positive than +18 mV, even though many sperm may attach, the egg remains completely inert (Jaffe, Nature (London)261, 68–71, 1976). At Em from +17 to ?90 mV, all inseminated eggs elevate normal fertilization envelopes, although substantially increased concentrations of sperm are required at Em from +17 to +12 mV. Whether cleavage occurs depends on the clamped Em. When clamped at Em from +17 to ?25 mV, 100% of activated eggs cleave. However, when clamped at Em from ?26 to ?75 mV the percentage of activated eggs which cleave progressively decreases. At clamped Em between ?76 and ?90 mV, none of the activated eggs cleave. All monospermic voltage clamped eggs that cleave develop to normal swimming blastulae. In all eggs that fail to cleave (clamped at Em more negative than ?30 mV), sperm penetration is blocked, the sperm is lifted off the egg surface as the fertilization envelope rises, and a sperm aster never forms. Preventing formation of the fertilization envelope by prior disruption of the vitelline layer with dithiothreitol does not promote entry of the sperm. In conclusion, preventing the depolarization normally associated with fertilization suppresses sperm entry in the sea urchin egg, yet activation proceeds. Present evidence suggests an effect of the electrical field across the plasma membrane in suppressing sperm entry.  相似文献   

2.
In response to fertilization, the membrane potential (Em) of the crab egg hyperpolarizes from about -50 mV to about -80 mV in 400 msec. To establish whether this fast hyperpolarization is correlated with physiological polyspermy or conversely mediates an electrical block to polyspermy, we examined the morphological and electrophysiological characteristics of eggs from the crab Maia squinado. Fertilized naturally spawned eggs were found to be physiologically monospermic and their average Em was constant at -77 +/- 0.5 mV. To examine a possible electrical block ensuring this monospermy, unfertilized eggs were voltage clamped at various Em values ranging from +20 to -90 mV, inseminated, and examined morphologically. All eggs clamped at +20 to -65 mV responded by developing a fertilization current, If. It consisted of an outwardly directed K+ current in one or several steps, each caused by a single spermatozoon interacting with the egg membrane. The percentage of eggs clamped at values more negative than -65 mV, which responded at insemination by developing an If, decreased and dropped to 0 at -80 mV. This indicated that the membrane processes occurring during the contact between gametes and eliciting an electrical response by the egg membrane are voltage dependent. Further, the spermatozoon never penetrated into eggs voltage clamped at a Em between +20 and -60 mV and at voltages more negative than -75 mV. Em values between -65 and -75 mV were required for spermatozoon incorporation into the egg, indicating that sperm entry is also voltage dependent. It is proposed that the hyperpolarization of the egg membrane in response to fertilization constitutes a long-lasting electrical block to polyspermy in crab eggs.  相似文献   

3.
Polyspermy blocking, to ensure monospermic fertilization, is necessary for normal diploid development in most animals. We have demonstrated here that monospermy in the clawed frog, Xenopus tropicalis, as well as in X. laevis, is ensured by a fast, electrical block to polyspermy on the egg plasma membrane after the entry of the first sperm, which is mediated by the positive‐going fertilization potential. An intracellular Ca2+ concentration ([Ca2+]i) at the sperm entry site was propagated as a Ca2+ wave over the whole egg cytoplasm. In the X. tropicalis eggs fertilized in 10% Steinberg's solution, the positive‐going fertilization potential of +27 mV was generated by opening of Ca2+‐activated Cl?‐channels (CaCCs). The fertilization was completely inhibited when the egg's membrane potential was clamped at +10 mV and 0 mV in X. tropicalis and X. laevis, respectively. In X. tropicalis, a small number of eggs were fertilized at 0 mV. In the eggs whose membrane potential was clamped below ?10 mV, a large increase in inward current, the fertilization current, was recorded and allowed polyspermy to occur. A small initial step‐like current (IS current) was observed at the beginning of the increase in the fertilization current. As the IS current was elicited soon after a small increase in [Ca2+]i, this is probably mediated by the opening of CaCCs. This study not only characterized the fast and electrical polyspermy in X. tropicalis, but also explained that the initial phase of [Ca2+]i increase causes IS current during the early phase of egg activation of Xenopus fertilization.  相似文献   

4.
The role of the egg membrane potential in the prevention of polyspermy in Rana pipiens was studied with intracellular microelectrodes and ion-substituted media. At fertilization, the egg membrane potential shifts from a resting value of ?28 to +8 mV in a single step of less than 1 sec. A second, slower shift reaches a maximum amplitude of +17 mV; the membrane potential is positive for a total of 21 min. When the membrane potential of unfertilized eggs exposed to sperm was held at +1 to +22 mV for 30 min by injecting current through a second intracellular electrode, the initiation of the first cleavage furrow was delayed about 20 min, suggesting that the eggs were not fertilized while the membrane potential was positive. Injection of a similar amount of current after fertilization did not delay cleavage. Furthermore, fertilization in ion-substituted media suggests a correlation between the maximum amplitude of the positive-going shift and the incidence of polyspermy. Up to 25% of eggs were polyspermic when inseminated in the presence of NaI, and the maximum amplitude was reduced to ?20 mV when eggs were fertilized in 40 mM NaI. In contrast, fertilization in 40 mM NaCl reduced the maximum amplitude only to +6 mV, and produced no polyspermy. In solutions of NaBr, intermediate effects on the membrane potential and polyspermy were seen. Comparable results were obtained with the toad, Bufo americanus. We conclude that the membrane potential shift prevents polyspermy.  相似文献   

5.
Electrical activity in the fertilized egg of the tunicate Clavelina was studied with microelectrode recording and voltage clamp techniques. The resting potential could assume either of two stable values (approximately ?70 or ?30 mV) and could be shifted between these values by direct current stimulation. Spontaneous shifts between two stable resting potentials were also seen. Egg cells produced action potentials spontaneously and in response to depolarizing stimuli. Inward currents were carried by both Na and Ca ions and a prominent outward potassium current was seen with depolarization to voltages above ?15 mV. The steady-state current-voltage relationship (I–V curve) of the membrane showed two voltages where the net membrane current equaled zero: approximately ?35 and ?70 mV. Between these two voltages, membrane current was inward and carried by noninactivating Na and Ca currents. Inward rectification, which was blocked by external Rb, occurred at voltages below ?70 mV. The voltage dependence of inward rectification is thought by the authors to be important for establishing the more negative resting potential; it is also thought the presence of inward current which does not inactivate completely at voltages more negative than about ?20 mV is an important determinant of the more depolarized resting potential.  相似文献   

6.
Alison Taylor  Colin Brownlee 《Planta》1993,189(1):109-119
The electrical properties of unfertilized eggs of Fucus serratus L. were characterized using voltage clamp and current clamp with single electrodes. The plasma membrane of the unfertilized egg is excitable. Depolarizing the egg in current clamp induced a transient depolarizing voltage response, the amplitude of which was dependent on the presence of external Ca2+ or Ba2+ and was blocked by La3+. The repolarizing phase was blocked by tetraethylammonium ions. Repeated stimulation at frequencies greater than 0.5 Hz caused a transient loss of excitability. Voltage-clamp experiments revealed that an inward current with an activation threshold of -35 mV underlies the depolarizing phase of the voltage response. This current showed rapid activation and slow inactivation. The current was blocked by La3+ and could be carried by Ca2+ and Ba2+ but not by Sr2+ or Na+. Further depolarization to values more positive than-5 mV induced a slowly activating outward K+ current in addition to the inward current, which corresponded to the repolarizing phase of the voltage response. This K+ current showed little or no inactivation during stimulation and slow deactivation on return to the resting potential. Hyperpolarizing the egg elicited an inward current. On fertilization, the Fucus egg generates a depolarizing fertilization potential. Voltage-clamp experiments revealed an inward fertilization current underlying the fertilization potential. Within 15 min of fertilization a dramatic, irreversible increase in resting K+ permeability developed. The roles of the plasma-membrane channels in generation of the fertilization potential and egg activation are discussed.Abbreviations and Symbols ASW artificial seawater - SECC single-electrode current clamp - SEVC single-electrode voltage clamp - TEA tetraethylammonium - Vm membrane potential This work was supported by The Marine Biological Association U.K., Science and Engineering Research Council U.K. and The Royal Society of London.  相似文献   

7.
Electrical properties of the egg membrane of Drosophila melanogaster were examined using intracellular microelectrodes. Unfertilized eggs and fertilized eggs for the period up to the syncytial blastoderm stage were used. Among Na, K, and Cl, K was most permeant to the membrane. The K permeability, however, did not completely determine the membrane potential. The resting potential in standard solution was ?63.5 ± 8.0 mV (mean ± SD) in unfertilized eggs collected within 2–3 days after virgin flies started to lay eggs. The resting potential in fertilized eggs was ?27.0 ± 8.4 mV within 20 min after egg deposition, while it was ?55.1 ± 6.5 mV at the syncytial blastoderm stage. These changes at different developmental stages were associated with changes in the K-dependence of the membrane. The larger amplitude of the resting potential was suggested to be due to increased K permeability but not to decreased nonspecific leakage. The current-voltage relation was linear throughout the stages examined. Action potentials, such as those in eggs of other animals, were not observed. High Ca media significantly increased the amplitude of the resting potential associated with increase in the membrane resistance. A remarkable nonlineality in the I–V relation appeared in high Ca media, which caused continuously increasing hyperpolarization during sustained inward current. Eggs of temperature-sensitive mutants, shits1 and parats1 showed properties similar to those in wild-type eggs with transient temperature changes.  相似文献   

8.
Ascidian eggs and zygotes were whole-cell voltage-clamped and inward membrane currents, generated by stepping the membrane potential, studied from fertilization up to cytokinesis. Currents, induced by changing the voltage in steps from -80 to -30 mV, or to 0 mV, had maximum amplitudes which ranged from 400 to 1200 pA in the unfertilized egg and 100 to 1300 pA in the zygote. At 5 to 10 min after fertilization it was not possible to generate inward currents owing to the activity of nonspecific fertilization channels. Preceding cytokinesis, we observed a reduction in amplitude of the inward currents. By cutting eggs and zygotes into fragments, we have shown that the ion channels generating these inward currents are symmetrically distributed over the egg plasma membrane, but regionalized in the zygote with a maximum density at the animal pole.  相似文献   

9.
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.  相似文献   

10.
The membrane potentials of sea urchin (Hemicentrotus pulcherrimus) eggs before and after fertilization and their changes during the membrane elevation induced by intracellular electrical stimulation were recorded in solutions of various ionic compositions. Upon fertilization, the membrane potential (?10 mV) depolarized and reversed polarity by a few mV, then gradually returned to a new steady level ranging between ?50 and ?60 mV. The activation potential is closely associated with a transient increase in the membrane permeability. The potential of the unfertilized egg is hyperpolarized by monovalent anions (Br?, Cl? and NO3?) and depolarized slightly by K+. In contrast, the membrane of the fertilized egg is markedly depolarized by K+. Suppression of depolarization associated with an increase of the membrane permeability was recorded in Na-free medium (Tris-HCl). The selective increase in permeability to monovalent anions is thought to alternate with the selective increase in permeability to K+through the mediation of a transient increase of Na+-permeability at the time of fertilization. No causal relationship between the membrane elevation and the depolarization was established because the breakdown of the cortical granules occurs without depolarization or an increase in membrane permeability.  相似文献   

11.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

12.
Some electrical properties of the sea urchin oocyte during germinal vesicle breakdown (GVBD) and fertilization have been studied using two intracellular electrodes. Oocytes with distinct germinal vesicles have resting potentials of ?70 to ?90 mV and the specific membrane resistance may range from 3 to 10 kΩ·cm2. Around rest the I–V relationship is concave toward the axis origin and the membrane is K+ selective. A second electrical state, of lower potential and higher resistance, preexists in the membrane. Following GVBD, the K+-selective system is lost and the oocyte attains the characteristics of the second state with a resting potential of ?10 to ?50 mV and specific membrane resistance of 10–50 kΩ·cm2. At rest the I–V relationship tends to be convex toward the axis origin. The majority of sea urchin eggs (which have undergone GVBD and completed meiosis) have a resting state of ?10 to ?30 mV; 10–50 kΩ·cm2. The I–V relationship around rest is convex toward the axis origin and the resting potential is sensitive to changes of Na+, Cl?, and K+ in the external medium. There is probably no major change in the electrical properties of the oocyte during the completion of meiosis. A small percentage of eggs from suboptimal animals have high resting potentials of ?70 to ?90 mV and specific membrane resistance of 5–50 kΩ·cm2. Such eggs have predominantly K+-selective membranes and we suggest that they are either underripe or aged. The first electrical event across the egg plasma membrane during fertilization is a step-like depolarization which occurs about 2 sec after the attachment of the fertilizing spermatozoon to the vitelline layer. There is no change—at the level of the light microscope—either in the egg surface or in the behavior of the spermatozoon until the second event, the fertilization potential (FP), is initiated 11 sec later. The cortical reaction occurs simultaneously with the FP and during the rising phase of the FP the spermatozoon stops gyrating around its point of attachment. Oocytes, which do not have cortical granules, upon insemination exhibit step events but no FP; in contrast artificially activated eggs, either spontaneous or induced by the ionophore A23187, give rise to only the FP. We suggest that the FP is the electrical result of the modification of the egg plasma membrane during cortical exocytosis.  相似文献   

13.
The electrical properties of the egg of the medaka, Oryzias latipes, were studied before, during, and after fertilization. The resting potential of the unfertilized egg averaged ?39 ± 9 mV in Yamamoto's Ringers (Y. Ringers), but 20% of the values were between ?50 and ?60 mV. Fertilization triggers a small depolarization of 4 ± 3 mV in 10% Y. Ringers with an average duration of 20 ± 10 sec. The amplitude of this depolarization is independent of [Na+]o, [Ca2+]o, and [Cl?]o, so it appears to be due to a nonspecific leak triggered by sperm-egg fusion. The depolarization is followed by a longer hyperpolarizing phase with an average amplitude of 31 ± 12 mV. Recovery from this hyperpolarization has a fast phase lasting 155 ± 18 sec, followed by a slower phase which reaches a steady average membrane potential of ?19 ± 1 mV by 9 min after fertilization. The membrane resistance falls 10-fold during the first 2 min after fertilization, from 40 (1520 kΩ-cm2) to 3 MΩ. This is largely due to an increase in the K+ conductance. At the peak of the hyperpolarization, the membrane potential exhibits a 28 mV/decade [K+]o dependence and a 6 mV/decade [Na+]o dependence. The membrane resistance slowly recovers over the next 8 min to a value about 30% larger than before fertilization. The relation of current vs voltage was linear before, during, and after fertilization and indicated a reversal potential of ?98 ± 20 mV for the hyperpolarization peak. The egg's capacitance averaged 0.04 ± 0.01 μF (0.9 μF/cm2) before fertilization and approximately doubles within 90 sec after fertilization. It then decreases over a 9-min period, reaching a value 25% smaller than before fertilization.  相似文献   

14.
Membrane currents were measured in single voltage-clamped sea urchin eggs (Lytechinus pictus and Lytechinus variegatus) that were injected with either EGTA or neomycin and inseminated. Although egg activation and the fertilization calcium wave were prevented by injection of either of these compounds, sperm attached and still elicited inward currents. Sperm-induced currents in EGTA-injected eggs had an abrupt onset, quickly reached a maximum, and then slowly declined in amplitude. Sperm incorporation occurred readily in EGTA-injected eggs. Similar results were obtained with another calcium chelator, BAPTA. In neomycin-injected eggs, sperm-induced currents generally had an abrupt onset and, in contrast to EGTA-injected eggs, the currents usually cut off rapidly. Sperm failed to enter the neomycin-injected eggs and the duration of sperm-induced currents in neomycin-injected eggs was markedly dependent upon the voltage-clamp holding potential, with shorter duration currents occurring at -70 than at -20 mV. The lability of the initial interaction between sperm and egg at negative holding potentials may explain why activation often fails when the egg membrane is voltage clamped at these potentials (Lynn et al., Dev. Biol. 128, 305-323, 1988).  相似文献   

15.
Voltage- and time-dependent currents having slow kinetics have been studied in plasma membranes of immature oocytes of the european frog, Rana esculenta. IK, corresponding to an outward flow of K+, is activated at potentials more positive than about -40 mV, and subserves outward rectification; Iir, corresponding to an outward flow of Cl-, is activated at potentials more negative than about -80 mV and subserves inward rectification. Such currents can act as negative feedback mechanisms in the control of membrane potential in the immature oocyte and limit to a somewhat restricted range its possible deviations from resting values. Besides IK, membrane depolarizations to potentials more positive than about +30 mV are capable of activating INa, corresponding to outflow of Na+. By contrast, the frog mature egg-cell has a single voltage- and time-dependent current, IM, activated at potentials more positive than +30 mV, with properties similar to INa. The disappearance of IK and Iir along with remarkable reduction in leakage lowers impedance in the egg membrane. It seems reasonable to suggest that the observed changes in membrane permeability reflect changes which have taken place along the maturation process and are of importance for successful fertilization.  相似文献   

16.
用双微电极电压钳技术在巨孔匙(虫戚)(Megathura)未受精卵细胞膜上记录到多种离子流。主要有一种内向的两价离子流和几种钾离子流:包括钡离子激活的钾离子流,迅速激活又迅速失活的钾离子流(类似于I_A)和异常整流钾离子流。不同细胞的离子流大小不同。在一些卵可能会缺少其中某一种离子流。此外,还观察到浴槽溶液中氯和钠离子浓度改变对膜电位及膜电导的影响。  相似文献   

17.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

18.
Fragments of ascidian eggs, but at random in any plane and ranging in size from 10 to 90% of the total egg volume, displayed the electrical characteristics of the intact egg, having a resting potential of -86 mV and giving rise to an action potential upon stimulation by electrical current injection. Following insemination, the fragments generated fertilization potentials, comparable to those of intact eggs, although the repolarization phase was shorter. Our data show that there are sufficient ion channels throughout the egg surface to generate action potentials and fertilization potentials in excised egg fragments, irrespective of their global origin. Furthermore, the fertilizing spermatozoon is capable of activating fertilization channels in areas of the egg plasma membrane not destined for sperm entry.  相似文献   

19.
Asymmetric membrane currents and calcium transients were recorded simultaneously from cut segments of frog skeletal muscle fibers voltage clamped in a double Vaseline-gap chamber in the presence of high concentration of EGTA intracellularly. An inward phase of asymmetric currents following the hump component was observed in all fibers during the depolarization pulse to selected voltages (congruent to -45 mV). The average value of the peak inward current was 0.1 A/F (SEM = 0.01, n = 18), and the time at which it occurred was 34 ms (SEM = 1.8, n = 18). A second delayed outward phase of asymmetric current was observed after the inward phase, in those experiments in which hump component and inward phase were large. It peaked at more variable time (between 60 and 130 ms) with amplitude 0.02 A/F (SEM = 0.003, n = 11). The transmembrane voltage during a pulse, measured with a glass microelectrode, reached its steady value in less than 10 ms and showed no oscillations. The potential was steady at the time when the delayed component of asymmetric current occurred. ON and OFF charge transfers were equal for all pulse durations. The inward phase moved 1.4 nC/microF charge (SEM = 0.8, n = 6), or about one third of the final value of charge mobilized by these small pulses, and the second outward phase moved 0.7 nC/microF (SEM = 0.8, n = 6), bringing back about half of the charge moved during the inward phase. When repolarization intersected the peak of the inward phase, the OFF charge transfer was independent of the repolarization voltage in the range -60 to -90 mV. When both pre- and post-pulse voltages were changed between -120 mV and -60 mV, the equality of ON and OFF transfers of charge persisted, although they changed from 113 to 81% of their value at -90 mV. The three delayed phases in asymmetric current were also observed in experiments in which the extracellular solution contained Cd2+, La3+ and no Ca2+. Large increases in intracellular [Cl-] were imposed, and had no major effect on the delayed components of the asymmetric current. The Ca2+ transients measured optically and the calculated Ca2+ release fluxes had three phases whenever a visible outward phase followed the inward phase in the asymmetric current. Several interventions intended to interfere with Ca release, reduced or eliminated the three delayed phases of the asymmetric current.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号