首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

2.
In the first paper in this series (Nathanson, M. A., and Hay, E. D. (1980). Develop. Biol. 78, 301–331), we described the ultrastructural alterations that take place when embryonic skeletal muscle is induced to form hyaline cartilage by demineralized bone matrix in vitro. In this paper, we analyze the pattern of appearance of chondroitin sulfates and dermatan sulfate in injured muscle in situ and in explants of muscle cultured either on bone matrix or on collagen gel. We also investigate the effects of exogenous glycosaminoglycans on the cultures to determine whether chondroitin sulfate (Ch-S) and hyaluronic acid (HA) can enhance or inhibit the biochemical differentiation of cartilage under these conditions. Our results indicate that during the first morphological phase, 1–3 days in vitro, there is an increased sulfate uptake, a shift in the relative abundance of Ch-S, and an increase in the ratio of chondroitin-4-sulfate (Ch-4-S) to chondroitin-6-sulfate (Ch-6-S); this change is correlated with the transformation of myoblasts to fibroblast-like cells in both types of cultures. A similar increase in the Ch-4-SCh-6-S ratio occurs in injured muscle in situ, suggesting that phase I is a regenerative response. Explants on bone matrix sustain Ch-4-S levels between 4 and 5 days (phase II) and show a large increase in Ch-4-S and sulfate incorporation when they form cartilage at 6–10 days (phase III). Explants on collagen gels regenerate muscle at 4–10 days with decreasing Ch-4-SCh-6-S ratios and decreasing sulfate incorporation. The data demonstrate that an environmental influence, such as trauma, is sufficient to alter the biosynthetic expression of skeletal muscle and that under appropriate conditions (such as the presence of bone matrix) this response may be augmented, leading to the synthesis of extracellular matrix components at ratios characteristic of cartilage. Exogenous Ch-S and HA did not significantly effect this overall pattern. These results are discussed in relation to the morphological observations presented in the preceding paper.  相似文献   

3.
Formation of cartilage by non-chondrogenic cell types   总被引:5,自引:0,他引:5  
Freshly excised embryonic rat skeletal muscle has been shown to form hyaline cartilage when organ cultured upon demineralized rat bone (bone matrix). Since skeletal muscle is composed of fibrous connective tissue (C.T.) as well as muscle cells, the cartilage could arise from either of these sources. The object of this study was to determine whether cartilage arose from fibrous connective tissue or muscle cells, or both, and whether the ability to form cartilage is limited to tissues derived from somatic mesoderm. Control experiments demonstrated that 19-day embryonic rat skeletal muscle formed cartilage when organ cultured on bone matrix after dissociation and cultivation in vitro, and that 11-day embryonic chick muscle also formed cartilage, although less reproducibly (3 out of 10 cases). Fibroblasts and skeletal muscle were cloned from similar suspensions of dissociated muscle in order to test these purified cell types. Dermis, vascular tissue, and tendons were mechanically removed prior to dissociation in order to eliminate fibroblasts from contaminant sources. Cloned fibroblasts, derived from rat skeletal muscle, formed cartilage in three out of three cases. It was not possible to clone sufficient rat skeletal muscle to place an aggregate onto bone matrix. An aggregate of several hundred chick skeletal muscle clones formed cartilage on bone matrix. The freshly excised C.T. capsules of embryonic chick thyroid and lung were tested for the ability to form cartilage as nonskeletal C.T. derivatives. The epithelial rudiments of thyroid and lung were also tested as endodermal derivatives. Chick cornea was similarly tested as an ectodermal derivative. Of these tissues, only the C.T. capsules formed cartilage. The results demonstrate that various C.T. cell types may alter their phenotype well after that stage at which their differentiation is thought to be stabilized, and that the ability to differentiate as cartilage may be common to all C.T. cells. The option of differentiating along a certain variety of pathways may depend more upon local conditions than on a predetermined pattern.  相似文献   

4.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

5.
The relationships between withdrawal of myoblasts from the cell cycle, myosin synthesis, and myoblast fusion have been examined in cultures of skeletal muscle derived from the regenerating tail of the lizard Anolis carolinensis. Utilizing both immunocytochemistry and transmission electron microscopy, we have demonstrated the presence of myosin in mononucleated lizard myoblasts which have entered a prefusion G0 period. A model is presented summarizing our current view of lizard myogenesis in vitro.  相似文献   

6.
During somitogenesis in Hymenochirus boettgeri, somites separate from non-segmented mesoderm. Somite formation involves changes in position of myotomal cells from perpendicular to parallel relative to axial organs; the changes are asynchronous and show a dorsoventral gradient. After the rotation has been completed, the myotomal cells (primary myoblasts) occupy the whole length of the myotomes. MyoD is present in nuclei of non-segmented mesoderm cells, of myotomal cells during their rotation and of myoblasts occupying the whole length of the myotomes. The effect of MyoD which activates muscle-specific genes is confirmed by the appearance of skeletal α-actin in mononucleate myoblasts in which myofibrils and the sarcotubular system develop. Differentiation of primary myoblasts results in development of mononucleate, morphologically mature myotubes. Differentiating myotubes are initially not accompanied by any other cells. In further developmental stages, mesenchymal cells appear in intermyotomal fissures and then in myotomes. Their role depends on their position: mesenchymal cells remaining in the intermyotomal fissures differentiate into fibroblasts while those that have migrated into the myotomes, between the myotubes, transform into secondary myoblasts. Their myogenic function is evidenced by the presence of MyoD in their nuclei. These cells fuse with the already existing mononucleate myotubes, resulting in an increase in their size and number of nuclei. Accepted: 30 January 2001  相似文献   

7.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

8.
The synthesis of two components of the basal lamina, laminin and type IV collagen, and their extracellular deposition on the surface of myotubes was studied in cultures of embryonic mouse and quail skeletal muscle cells and in the rat myoblast cell line L6. Production of type IV collagen and laminin by myoblasts and muscle fibroblasts was demonstrated by incorporation of radioactive amino acids into proteins and by immunoprecipitation with specific antibodies and electrophoretic analysis of labeled proteins. Immunofluorescence staining experiments revealed strong intracellular reactions with antibodies to laminin and type IV collagen in mononucleated myogenic and fibrogenic cells. Cells of fibroblast-like morphology showed a more intense staining than bipolar, spindle-shaped cells which perhaps represented postmitotic myoblasts. Myotubes did not show detectable intracellular staining. The formation of a basal lamina on myotubes was indicated by the deposition of laminin and type IV collagen on the surface of myotubes as viewed by immunofluorescence examination of unfixed cells. Staining for extracellular laminin was stronger in mass cultures than in myogenic clones, suggesting that secretion and deposition of components of the basal lamina on the myotube surface are complex processes which may involve cooperation between myogenic and fibrogenic cells.  相似文献   

9.
  • 1.1. Embryonic and posthatch turkey skeletal muscle development was compared in in vitro studies using clonal-derived embryonic myoblasts and satellite cells.
  • 2.2. Although population doubling times were similar between the two lines (25.4 hr for satellite cells and 26.4 hr for embryonic myoblasts), embryonic myoblasts consistently began log phase growth 24 hr earlier than satellite cells.
  • 3.3. Differentiation (fusion) of embryonic myoblasts was maximized by 36 hr in Dulbecco's Modified Eagle's Medium containing 1% horse serum compared with 72 hr for satellite cells.
  • 4.4. When administered a serum-free medium which supports proliferation of turkey satellite cells, embryonic myoblasts differentiated to form myotubes.
  相似文献   

10.
The control of gene expression during terminal myogenesis was explored in heterokaryons between differentiated and undifferentiated myogenic cells by analyzing the formation of species specific myosin light chains of chick and rat skeletal muscle. Dividing L6 rat myoblasts served as the biochemically undifferentiated parent. The differentiated parental cells were mononucleated muscle cells (myocytes) that were obtained from primary cultures of embryonic chick thigh muscle by blocking myotube formation with EGTA and later incubating the postimitotic cells in cytochalasin B. Heterokaryons were isolated by the selective rescue of fusion products between cells previously treated with lethal doses of different cell poisons. 95-99% pure populations of heterokaryons formed between undifferentiated rat myoblasts and differentiated chick myocytes were obtained. The cells were labeled with [35S]methionine, and whole cell extracts were analyzed on two-dimensional polyacrylamide gels. These heterokaryons synthesize the light chain of chick myosin and both embryonic and adult light chains of rat skeletal myosin. Control homokaryons formed by fusing undifferentiated cells to themselves did not synthesize skeletal myosin light chains. Control heterokaryons formed between undifferentiated rat myoblasts and chick fibroblasts also failed to synthesize myosin light chains. These results indicate that differentiated chick muscle cells provide some factor that induces L6 myoblasts to synthesize rat myosin light chains. This system provides a model for investigating the processes by which differentiated cell functions are induced.  相似文献   

11.
Ultrastructural studies of lizard (Anolis carolinensis) myogenesis in vitro   总被引:2,自引:0,他引:2  
In vitro differentiation of lizard (Anolis carolinensis) skeletal muscle cells was studied by electron microscopy. Myogenesis was studied under conditions in which large numbers of postmitotic prefusion myoblasts accumulate (Growth Medium) and under conditions which are permissive for myotube formation (Fusion Medium). In Growth Medium, myogenic cells proliferate, then assume a characteristic spherical morphology which permits definitive identification of prefusion myoblasts. During the early stages of culture, these round myoblasts resemble myoblasts described in other systems; ultrastructural similarities and differences are discussed. After longer periods of culture in Growth Medium, a continuum of differentiation from isolated myofilaments to assembled myofibrils was seen in these mononucleated cells. These observations confirm the dissociability of contractile protein assembly and myoblast fusion Cultures maintained in Fusion Medium or transferred from Growth Medium to Fusion Medium form multinucleated myotubes on a predictable time scale. Myogenesis was followed in these cultures with particular reference to the early events in myofilament assembly and myofibril formation.  相似文献   

12.
Avian embryonic myoblasts respond to a continuously stretching substratum in vitro by fusing into skeletal myofibers which are oriented parallel to the direction of substratum movement. The rate of stretch is critical for optimal orientation to occur. A speed of 0.2 mm per hour gives optimal orientation and rates of stretch faster or slower than this decreases the percentage of oriented fibers. The ratio of the rate of myofiber development to the rate of substratum stretch for optimal in vitro myofiber orientation is comparable to the in vivo ratio of the rate of myofiber development to the rate of bone elongation. Thus, this in vitro system supports the idea that mechanical force may be an important element in morphogenesis of skeletal muscle.  相似文献   

13.
Myosin types in cultured muscle cells   总被引:5,自引:2,他引:3       下载免费PDF全文
Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins.  相似文献   

14.
Clonal analysis of myoblast differentiation has been used to assess effects of denervation on developing skeletal muscle: chick embryo legs denervated by spinal cord cautery yield reduced proportions of clonable myoblasts (P. H. Bonner, 1978, Develop. Biol., 66, 207–219). The present work examines the effects on clonable myoblasts of functional denervation by d-tubocurarine. Curare treatment during the third or fourth days of embryonic development had no effect on clonable myoblasts later in development, treatment during the fifth or sixth days resulted in reduced proportions of clonable myoblasts, and treatment during the eighth or ninth days again had no effect. Clonal analysis of treated and control embryo leg muscle cells was performed between Days 10 and 18. Embryos were also permanently denervated by spinal cord cautery late in the sixth day. These embryos showed no effect of denervation on clonable myoblast proportion. It is concluded that the differentiation of skeletal muscle myoblasts is affected by interference with normal nerve-muscle relationships only during a “window” of sensitivity and that this “window” extends approximately from Hamburger and Hamilton stage 27 to stage 30.  相似文献   

15.
16.
Growth of embryonic skeletal muscle occurs by fusion of multinucleated myotubes with differentiated, fusion-capable myoblasts. Selective recognition seems to prevent fusion of myotubes with nonmyogenic cells such as muscle fibroblasts, endothelial cells, or nerve cells, but the nature of the signal is as yet unknown. Here we provide evidence that one of the selection mechanisms may be the enhanced affinity for laminin of myogenic cells as compared to fibrogenic cells. Growing myotubes in myoblast cultures accumulate laminin and type IV collagen on their surface in patches and strands as the first step in assembling a continuous basal lamina on mature myofibers (U. Kühl, R. Timpl, and K. von der Mark (1982), Dev. Biol. 93, 344-359). Fibronectin, on the other hand, assembles into an intercellular fibrous meshwork not associated with the free myotube surface. Over a brief time period (10-20 min) myoblasts from embryonic mouse thigh muscle adhere faster to laminin than do fibroblasts from the same tissue; these adhere faster to fibronectin. When a mixture of the cells is plated for 20 min on laminin/type IV collagen substrates, only myogenic cells adhere, giving rise to cultures with more than 90% fusion after 2 weeks; on fibronectin/type I collagen in the same time primarily fibroblastic cells adhere, giving rise to cultures with less than 10% nuclei in myotubes. The differential affinities of myoblasts for basement membrane constituents and of fibroblasts for interstitial connective tissue components may play a role in sorting out myoblasts from fibroblasts in skeletal muscle development.  相似文献   

17.
Summary Rat skeletal muscle actin was extracted, purified and its homogeneity established according to the criteria of ultracentrifugation and electrophoresis. Immunofluorescence procedure using antisera prepared in rabbits against the purified rat skeletal muscle actin revealed localized staining reaction in the I band region of the skeletal muscle. Similar studies on rat embryo muscle cultures showed a diffuse cytoplasmic fluorescence in fibroblastlike cells and an intense fluorescence in the multi-nucleated myoblasts of the younger cultures. In the older cultures strong fluorescence was detectable in scattered parallel rows and in the presumptive I bands of mononucleated myoblasts an in the thread-like mitochondria of fibroblasts. The distribution of fluorescence in these cells is considered indicative of the association of actin with the contracile protein in general and with mitochondria which in cultured myoblasts assume enormous lengths and appear to be extremely motile.  相似文献   

18.
Development of human embryonic stem cell (hESC)-based therapy requires derivation of in vitro expandable cell populations that can readily differentiate to specified cell types and engraft upon transplantation. Here, we report that hESCs can differentiate into skeletal muscle cells without genetic manipulation. This is achieved through the isolation of cells expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), following embryoid body (EB) formation. The ESC-derived cells differentiated into myoblasts in vitro as evident by upregulation of various myogenic genes, irrespective of the presence of serum in the medium. This result is further corroborated by the presence of sarcomeric myosin and desmin, markers for terminally differentiated cells. When transplanted in vivo, these pre-myogenically committed cells were viable in tibialis anterior muscles 14 days post-implantation. These hESC-derived cells, which readily undergo myogenic differentiation in culture medium containing serum, could be a viable cell source for skeletal muscle repair and tissue engineering to ameliorate various muscle wasting diseases.  相似文献   

19.
Fusion of mononucleate myoblasts to form multinucleated myotubes increases when skeletal muscle cells are grown in progressively higher oxygen concentrations (5%, 20%, and 40% oxygen). At four days of growth fusion of myoblasts (as expressed by the percent of all muscle nuclei that are located in myotubes) is 57 ± 2% in 5% oxygen, 68 ± 1% in 20% oxygen, and 78 ± 2% in 40% oxygen (P<0.001). However, at a concentration of 40%, oxygen depresses the rate of cell division and thereby affects the number of myoblasts available for fusion. Thus, oxygen concentration significantly modifies growth of skeletal muscle in vitro. Its net effect on myotube formation results from the interaction of its separate effects to enhance cell fusion and to depress cell proliferation.  相似文献   

20.
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-β-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号