首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Messenger RNA has been isolated from the postribosomal supernatant of Spisula solidissima eggs. This mRNA directs the synthesis of several proteins when added to the ascites or wheat germ cell free system. No histone except F1 is coded for by Spisula egg mRNA, in contrast to what has been reported previously for sea urchin egg mRNA. In sea urchin eggs histone mRNA is among the abundant species of maternal mRNA.Histones have been prepared from Spisula embryos at different development stages and histone synthesis followed by incubation with (14C)lysine. The analysis by electrophoresis on acrylamide gels indicates that the pattern of synthesis of histones changes during development and that a new histone F1 fraction is actively synthesized from the 32–64 cells stage. In earlier embryos a different F1 histone is synthesized and the mRNA for this protein may be the only histone mRNA present in eggs.  相似文献   

5.
A wheat germ cell-free translation system has been used to analyze populations of abundant messenger RNA from sea urchin eggs and embryos and from amphibian oocytes and ovaries. We show directly that sea urchin eggs and embryos contain translatable mRNA of three general classes: poly(A)+ mRNA, poly(A)? histone mRNA, and poly(A)? nonhistone mRNA. Additionally, some histone synthesis appears to be promoted by poly(A)+ RNA. Sea urchin eggs seem to contain a higher proportion of prevalent poly(A)? nonhistone mRNAS than do embryos. Some differences in the proteins encoded by poly(A)+ and poly(A)? RNAs are detectable. Many coding sequences in the egg appear to be represented in both poly(A)+ and poly(A)? RNAs, since the translation products of the two RNA classes exhibit many common bands when run on one-dimensional polyacrylamide gels. However, some of this overlap is probably due to fortuitous comigration of nonidentical proteins. Distinct stage-specific changes in the spectra of prevalent translatable mRNAs of all three classes occur, although many mRNAs are detectable throughout early development. Particularly striking is the presence of an egg poly(A)? mRNA, encoding a 70,000–80,000 molecular weight protein, which is not detected in morula or later-stage embryos. In amphibian (Xenopus laevis and Triturus viridescens) ovary RNA, the translation assay detects the following three mRNA classes: poly(A)+ nonhistone mRNA, poly(A)? histone mRNA, and poly(A)+ histone mRNA. Amphibian ovary RNA appearently lacks an abundant poly(A)? nonhistone mRNA component of the magnitude detectable in sea urchin eggs. mRNA encoding histone-like proteins is found in the very earliest (small stage 1) oocytes of Xenopus as well as in later stage oocytes. During oogenesis there appear to be no striking qualitative changes in the spectra of prevalent translatable mRNAs which are detected by the cell-free translation assay.  相似文献   

6.
The kinetics of accumulation of RNA labeled with uridine and the time course of change in the specific activity of the UTP pool were used to estimate the rate constants for synthesis and decay of RNA synthesized in unfertilized eggs of the sea urchin Lytechinus pictus. The rate of synthesis per haploid genome is similar to that in embryos. Most of the RNA is turning over with a half-life of about 5 hr, and an average of 11 pg of newly synthesized RNA accumulates at steady state. About 3.7% of the RNA in the polysomes of the egg is newly synthesized and this RNA has the heterogeneous size distribution expected for mRNA. Thus most, probably all, of the mRNA translated in the egg is also synthesized in the egg. Little, if any, of the RNA synthesized in the egg enters polysomes following fertilization. Thus the egg synthesizes a population of mRNA which is unstable and translated, but it also contains a more stable, untranslated population of previously synthesized, stored mRNA, which is translated only after fertilization. Since the two populations of mRNA code for the same abundant proteins (Brandhorst, B. P. (1976). Develop. Biol., 52, 310–317), there is a temporal separation in the metabolism and function of coexisting mRNA molecules of identical coding sequence. Among the mRNAs synthesized and translated in the egg are histone mRNAs having the same electrophoretic mobilities and rates of synthesis per genome as those synthesized in rapidly cleaving embryos. Thus the synthesis, entry into the cytoplasm, and translation of histone mRNA are not restricted to the S phase of the cell cycle or the period of cell division.  相似文献   

7.
It has been shown that about two thirds of Xenopus oocyte or sea urchin egg cytoplasmic poly(A)+ RNA contains interspersed repetitive sequences. The functional significance of this interspersed RNA has remained unknown. Here the function of a subfamily of interspersed RNA (XR family; McGrew and Richter, 1989: Dev Biol 134:267–270) in Xenopus oocytes was studied. We found that the elimination of T7 XR (one of the two complementary strands of the XR repeat) interspersed RNA by complementary oligodeoxynucleotides significantly inhibited protein synthesis. On the other hand, the injection of in vitro synthesized T7 XR RNA stimulated translation. Moreover, the insertion of the T7 XR RNA sequence into globin mRNA repressed the translation of the globin mRNA. In order to explain these results, we analyzed interactions between the XR interspersed RNA and oocyte proteins. We found that the major XR RNA binding proteins were p56 and p60, which could be the known mRNA “masking” proteins that bind mRNA and inhibit translation. Further, a 42 kD protein has been identified that appears to bind T7 XR RNA relatively specifically, although it interacts with mRNA with a lower affinity. Based on all of these data, we have proposed that interspersed RNA may be involved in regulating translation by competing with mRNA to interact with certain proteins that can regulate translation. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Delayed accumulation of maternal histone mRNA during sea urchin oogenesis   总被引:3,自引:0,他引:3  
We have used in situ hybridization and RNA blotting analysis to compare the timing of accumulation of poly(A) and alpha-subtype histone mRNA during oogenesis in the sea urchin Strongylocentrotus purpuratus. In situ hybridization with 3H-poly(U) shows that the content of poly(A) in the developing oocyte increases four- to sixfold during vitellogenesis, implying a similar increase for polyadenylated maternal RNAs. In contrast, both RNA blotting and in situ hybridization demonstrate that there is little, if any, alpha-subtype histone mRNA in large oocytes. These results suggest that these maternal mRNAs accumulate in the pronucleus of the haploid egg after completion of meiotic maturation where they are stored until their release during the breakdown of the pronucleus during prophase.  相似文献   

9.
The accumulation of messenger RNA coding for histone H3 in oogenesis of Xenopus laevis was studied by quantitative hybridization techniques, using a cloned genomic DNA fragment as a probe. This probe was isolated from cloned Xenopus histone DNA and contains most of the H3 coding sequences. Histone H3 mRNA accumulation was found to be completed before the maximum lampbrush stage. Hybridization of RNA blots with DNA probes containing genes for histones H2A, H2B, and H4 suggests the same accumulation pattern for the mRNAs coding for these histones as for histone H3 mRNA. The amount of H3 mRNA in the mature oocyte was established to be 130 ± 68 pg, i.e., about 5 × 108 copies.  相似文献   

10.
The sea urchin H2A.F/Z histone is a member of a subclass of highly conserved H2A variants. Sequence analysis confirms that H2A.F/Z mRNA is polyadenylated. In situ hybridization studies demonstrate that maternal H2A.F/Z message is stored in the egg cytoplasm and present at equal levels in all cells of the mesenchyme blastula-stage embryo, suggesting that H2A.F/Z is not coordinately regulated with DNA synthesis. When blastula-stage embryos were exposed to DNA synthesis inhibitors, no effect on the steady-state level of H2A.F/Z mRNA was observed, while the level of late class H2B mRNA decreased substantially. These results provide evidence that the basal mode of regulation of this unusual histone variant is conserved evolutionarily.  相似文献   

11.
A maternal store of histones in unfertilized sea urchin eggs is demonstrated by two independent criteria. Stored histones are identified by their ability to assemble into chromatin of male pronuclei of fertilized sea urchin eggs in the absence of protein synthesis, suggesting a minimum of at least 25 haploid equivalents for each histone present and functional in the unfertilized egg. In addition, electrophoretic analysis of proteins from acid extracts of unfertilized whole eggs and enucleated merogons reveals protein spots comigrating with cleavage stage histone standards, though not with other histone variants found in later sea urchin development or in sperm. Quantification of the amount of protein per histone spot yields an estimate of several hundred haploid DNA equivalents per egg of stored histone. The identity of some of the putative histones was verified by a highly sensitive immunological technique, involving electrophoretic transfer of proteins from the two-dimensional polyacrylamide gels to nitrocellulose filters. Proteins in amounts less than 2 x 10(-4) micrograms can be detected by this method.  相似文献   

12.
13.
14.
15.
The extent of protein, RNA and DNA synthesis in early cleavage stages of the sea urchin embryo (Parechinus angulosus) was determined. A histone mRNA specific cDNA was used in hybridization experiments to investigate the cytoplasmic localization of maternal histone mRNA in the unfertilized sea urchin egg and first cleavage stage embryo. In the unfertilized egg histone mRNA was localized exclusively in ribonucleoprotein particles with none in ribosomes or polyribosomes. This distribution changed after fertilization, in particular, coupled with the first cleavage telophase there was a significant transfer of histone mRNA from the ribonucleoprotein fraction to the polyribosomes. The results indicate mRNA specific translational control mechanisms.  相似文献   

16.
Spermatozoa of the mussel Cyprina islandica and the nemertine Malacobdella grossa have been adddd to oocytes and mature eggs of the sea urchin Psammechinus miliaris. No spermatozoa were found to attach to the surface of the mature eggs which also remained unactivated throughout the experiments. Spermatozoa of both species were found to reach the oocyte surface and to become attached there. The interaction between egg and sperm was different in the two species and different from the situation of a sea urchin sperm on the sea urchin oocyte. The nemertine sperm was found to penetrate the cortex of the oocyte in a fashion resembling phagocytosis. The mussel sperm was partly surrounded by thin protrusions from the sea urchin oocyte which extended along a major portion of the sperm head.  相似文献   

17.
The messenger RNAs for five classes of histone proteins are shown by competitive RNA-DNA hybridization to be stored in the unfertilized egg of the sea urchin, Lytechinus pictus. The masked mRNAs for f2b, f2a2, f3 and f2al histones migrate in polyacrylamide slab gels with the same mobility as the histone mRNAs that are synthesized after fertilization and are found engaged in protein synthesis on polysomes. The masked maternal and embryonic mRNAs for histone f2a1 are identical in mobility when analyzed in a gel system capable of resolving differences estimated as small as 4–5 nucleotides in length. We conclude that these histone mRNAs synthesized during oogenesis and inactive prior to fertilization are not activated during embryogeny by alteration in their molecular size.  相似文献   

18.
Histone messenger RNAs isolated from early blastula stage Lytechinus pictus sea urchin embryos have been separated into discrete RNA bands on polyacrylamide gels. The most rapidly migrating of these molecules, the putative histone H4 mRNA, has been digested with T1 ribonuclease to generate oligonucleotides for nucleotide sequence analysis. Many of these sequences are colinear with the highly conserved amino acid sequence of histone H4 protein as determined for both cows and peas.Histone H4 messenger RNA hybridizes in conditions of DNA excess to sea urchin DNA which is repeated approximately 470-fold. Despite this level of repetition the nucleotide sequence of the H4 messenger RNA reflects little evolutionary divergence within the H4 genes of L. pictus as judged by the stoichiometric yield of T1 oligonucleotides and the hybridization and thermal stability of histone H4 mRNA-DNA hybrids.  相似文献   

19.
Re-examination of histone changes during development of newt embryos   总被引:1,自引:0,他引:1  
Embryos of Triturus pyrrhogaster (BOIE) were labeled with Na214CO3 and the incorporation of radioactivity into histone fractions was determined by the electrophoresis of the acid-soluble protein from isolated nuclei on a polyacrylamide gel with or without Triton X-100. The results supported the previous observation that the content of H1 histone might be low in blastulas and increased during development but they did not confirm the displacement of blastula H1 by other H1 molecular species in later embryos. The rate of H2b or H2a histone synthesis did not change much during development which contrasted sharply with the case of histone synthesis in sea urchin embryos. By changing the label duration or by culturing various durations after the label it was suggested that the histone fractions were synthesized or degraded as a set and any particular fraction that had a markedly long or short life could not be detected. The results were discussed in relation to the possible functions of H1 histone and to the histone synthesis in sea urchin embryos.  相似文献   

20.
Interspecific hybrids of the sea urchins Strongylocentrotus purpuratus (♀) and Lytechinus pictus (♂) were used to estimate the contributions of the maternal and paternal genomes to histone mRNA synthesis during early development. Radiolabeled histone mRNAs from the two sea urchin species were identified by hybridization to cloned histone genes from both S. purpuratus and L. pictus and shown to be electrophoretically distinguishable. The synthesis of maternal and paternal histone mRNA in these hybrid embryos is evident as early as the two-cell stage. By at least the 16-cell stage, both maternal and paternal histone mRNAs are associated with polysomes. The relative amounts of the maternal and paternal histone mRNAs synthesized by the zygote appear to be similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号