首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sympathetic neuron differentiation was studied using a fluorescence histochemical assay to detect the appearance of cell-bound catecholamines. Results from in vitro organ cultures indicate that chick neural crest cells must interact with both ventral neural tube (defined throughout as the ventral neural tube plus the notochord) and somitic mesenchyme in order to differentiate into sympathoblasts. Somite, ventral neural tube, and crest were cultured transfilter in various combinations to define these tissue interactions more precisely. Results from these experiments indicate that neural crest cells must be contiguous to somite in order to differentiate into sympathoblasts, but ventral neural tube may act across a Millipore filter membrane (type TH, 25 μm thick) either on somite, crest, or both. To distinguish among these possibilities, somite was cultured transfilter to ventral tube for a short period, after which ventral tube was removed and fresh crest was added to the somite. The results from this and other experiments support the hypothesis that the ventral tube does not act directly on crest cells, but elicits a developmental change in somitic mesenchyme, which then promotes sympathoblast differentiation. To study the relationship of nerve growth factor (NGF) to the differentiation of sympathetic neurons, cultures of somite + crest were temporarily exposed transfilter to ventral tube, in the presence or the absence of exogenous NGF. The results of these and other experiments are consistent with the hypothesis that the continued presence of ventral tube is required to ensure the survival of the differentiating sympathetic neurons. With respect to this second function, ventral tube can be replaced by exogenous NGF.  相似文献   

2.
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural tube cells, can be regulated by interactions with Hensen's node. Using a transfilter co-culture system, we found that young (stage 3+ to 4) Hensen's node up-regulates the expression of two cranial-specific phenotypes (fibronectin and smooth muscle actin immunoreactivities) in mass cultures of trunk neural crest cells, and down-regulates the expression of a trunk-specific phenotype (melanin synthesis). The changes in phenotype produced by exposure to young Hensen's node were not accompanied by changes in the proliferation of either fibronectin immunoreactive cells or melanocytes. The capacity of Hensen's node to elicit changes in trunk neural crest cell phenotype decreased as the developmental age of the node increased and was lost by stage 6. In addition, old Hensen's node did not stimulate the expression of trunk-specific phenotypes in cranial neural crest cells, suggesting that cranial- and trunk-specific phenotypes are induced by different mechanisms. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Neuronal differentiation of mouse neural crest cells in vitro   总被引:1,自引:0,他引:1  
The purpose of the present study is to analyze the effect of serum or chick embryo extract (CEE) on the neuronal differentiation of the mouse neural crest cells. When the crest cells were cultured in the medium containing serum at low concentration (5% calf serum), neurite outgrowth was observed. The active outgrowth was detected at 3-4 days in culture. However, in the medium supplemented with 20% calf serum, no neurite appeared, and the crest cells remained fibroblast-like. The differentiation of adrenergic neurons was observed when the crest cells were cultured in the medium containing CEE along with serum.  相似文献   

4.
5.
During development neural crest cells give rise to a wide variety of specialized cell types in response to cytokines from surrounding tissues. Depending on the cranial-caudal level of their origin, different populations of neural crest cells exhibit differential competence to respond to these signals as exemplified by the unique ability of cranial neural crest to form skeletal cell types. We show that in addition to differences in whether they respond to particular signals, cranial neural crest cells differ dramatically from the trunk neural crest cells in how they respond to specific extracellular signals, such that under identical conditions the same signal induces dissimilar cell fate decisions in the two populations in vitro. Conversely, the same differentiated cell types are induced by different signals in the two populations. These in vitro differences in neural crest response are consistent with in vivo manipulations. We also provide evidence that these differences in responsiveness are modulated, at least in part, by differential expression of Hox genes within the neural crest.  相似文献   

6.
Several studies have suggested that the development of cholinergic properties in cranial parasympathetic neurons is determined by these cells' axial level of origin in the neural crest. All cranial parasympathetic neurons normally derive from cranial neural crest. Trunk neural crest cells give rise to sympathetic neurons, most of which are noradrenergic. To determine if there is an intrinsic difference in the ability of cranial and trunk neural crest cells to form cholinergic neurons, we have compared the development of choline acetyltransferase (ChAT)-immunoreactive cells in explants of quail cranial and trunk neural crest in vitro. Both cranial and trunk neural crest explants gave rise to ChAT-immunoreactive cells in vitro. In both types of cultures, some of the ChAT-positive cells also expressed immunoreactivity for the catecholamine synthetic enzyme tyrosine hydroxylase. However, several differences were seen between cranial and trunk cultures. First, ChAT-immunoreactive cells appeared two days earlier in cranial than in trunk cultures. Second, cranial cultures contained a higher proportion of ChAT-immunoreactive cells. Finally, a subpopulation of the ChAT-immunoreactive cells in cranial cultures exhibited neuronal traits, including neurofilament immunoreactivity. In contrast, neurofilament-immunoreactive cells were not seen in trunk cultures. These results suggest that premigratory cranial and trunk neural crest cells differ in their ability to form cholinergic neurons.  相似文献   

7.
Chick trunk neural tubes containing neural crest cells were cultured in vitro. Cell outgrowth from these neural tube explants consists primarily of a small stellate cell population. After 3 days in culture the small stellate cell population undergoes a remarkable change in morphology that is characterized by a more refractile appearance in the phase contrast microscope. Subsequent to this change in morphology, pigment granules become visible in the cytoplasm after 4 days in culture. After 6 days in culture, virtually all of the small stellate cells are pigmented. The cell cycle parameters of the small stellate cell population are: S = 4.4 ± 1.2 hr (SD). G2 = 1.5 ± 1.0 hr (SD). M = 1.7 ± 0.6 hr (SD). and Gl = 3.8 ± 1.0 hr (SD). Continuous label experiments demonstrate that (G1+G2+M) increases from 7 hr in Day 4 cells, as yet unpigmented, to 12 hr in Day 5 cells that have become pigmented. This change is consistent with an increase in G1 and/or G2 that is closely correlated with the appearance of pigment granules. It is of interest that this cell cycle change is correlated with a rather late event in the developmental program of these neural crest cells rather than with the earlier morphological change observed after 3 days in culture.  相似文献   

8.
9.
To isolate mouse neural crest stem cells, we have generated a rat monoclonal antibody to murine neurotrophin receptor (p75). We have immortalized p75+ murine neural crest cells by expression of v-myc, and have isolated several clonal cell lines. These lines can be maintained in an undifferentiated state, or induced to differentiate by changing the culture conditions. One of these cell lines, MONC-1, is capable of generating peripheral neurons, glia, and melanocytic cells. Importantly, most individual MONC-1 cells are multipotent when analyzed at clonal density. The neurons that differentiate under standard conditions have an autonomic-like phenotype, but under different conditions can express markers of other peripheral neuronal lineages. These lines therefore exhibit a similar differentiation potential as their normal counterparts. Furthermore, they can be genetically modified or generated from mice of different genetic backgrounds, providing a useful tool for molecular studies of neural crest development. © 1997 John Wiley & Sons, Inc. J Neuroblol 32 : 722–746, 1997  相似文献   

10.
We have investigated the interaction of cellular fibronectin (CFN) with cultured quail neural crest cells and its possible role in crest cell migration and differentiation. In vitro, quail neural crest cells from the trunk region differentiate into at least two morphologically recognizable cell types, melanocytes and adrenergic nerve cells. The latter often aggregate spontaneously into ganglia-like structures. We found that neither melanocytes nor adrenergic nerve cells synthesize CFN. However, both cell types readily interacted with exogenous CFN: Melanocytes removed CFN from the substratum and accumulated it in an aggegated form on their upper cell surface, whereas unpigmented cells migrated on the CFN substratum, often rearranging it into a fibrillar network. The adsorption of CFN by melanocytes was apparently without further consequences. However, catecholamine-positive cells were substantially increased after treatment with exogeneous fibronectin. The stimulation of adrenergic differentiation of neural crest cells is the first evidence for a positive regulatory role of fibronectin in differentiation.  相似文献   

11.
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.  相似文献   

12.
M Satoh  H Ide 《Developmental biology》1987,119(2):579-586
Quail neural crest cells were treated in vitro with alpha-melanocyte-stimulating hormone (alpha-MSH) or dibutyryl cyclic AMP (dbcAMP) plus theophylline. These treatments increased the proportion of melanocytes to total cells in crest cell outgrowth cultures. Pigmentation of neural crest cell clusters proceeded more rapidly when cultures were treated with alpha-MSH or dbcAMP plus theophylline than when untreated. In clonal cell cultures, the proportion of pigmented colonies to total colonies was increased by MSH treatment. From these results, MSH seems not only to accelerate melanogenic differentiation but also to affect the state of commitment of neural crest cells to melanogenic differentiation in vitro, and this action of MSH appears to be mediated by cAMP.  相似文献   

13.
Induction and differentiation of the neural crest   总被引:1,自引:0,他引:1  
The neural crest is a population of cells that forms at the junction between the epidermis and neural plate in vertebrate embryos. Recent progress has elucidated the identity and timing of molecular events responsible for the earliest steps in neural crest development, particularly those involving the induction and its migration. Concomitantly, advances have been made in the identification, purification and generation of neural crest stem cells at various developmental stages that deepens our understanding of the plasticity and restriction of neural crest differentiation.  相似文献   

14.
Neural stem cells (NSCs) could be very useful for the "cell therapy" treatment of neurological disorders. For this reason basic studies aiming to well characterize the biology of NSCs are of great interest. We carried out a molecular and immunocytochemical analysis of EGF-responsive NSCs obtained from rat pups. After the initial growth of NSCs as floating neurospheres in EGF-containing medium, cells were plated on poly-L-ornithine-coated dishes either in the presence or absence of EGF. We followed cell differentiation and apoptosis for 21 days in vitro and analyzed the expression levels of some genes having a major role in these processes, such as pRB, pRB2/p130, p27, and p53. We observed that EGF impairs neuronal differentiation. Furthermore, in the absence of mitogens, apoptosis, which appeared to proceed through the "p53 network," was significantly lower than in the presence of EGF. The cyclin kinase inhibitor p27, while important for cell cycle exit, seemed dispensable for cell survival and differentiation.  相似文献   

15.
Developmental potential of avian trunk neural crest cells in situ   总被引:4,自引:0,他引:4  
M Bronner-Fraser  S Fraser 《Neuron》1989,3(6):755-766
To analyze the developmental potential of individual neural crest cells or their precursors, we have microinjected a vital dye, lysinated rhodamine dextran (LRD), into single cells in the dorsal neural tube. The phenotypes of the descendants that inherited the LRD from the injected cells were evaluated based upon their position, morphology, and neurofilament expression. Individual neural crest cells labeled before or as they emigrated from the neural tube gave rise to both sensory and sympathetic neurons as well as nonneuronal cells, some of which had the morphological characteristics of Schwann cells or pigment cells. In numerous cases, the descendants of a single cell included both neural crest- and neural tube-derived neurons, suggesting that some cells of the peripheral and central nervous systems share a common lineage. Our data demonstrate definitively that both emigrating and premigratory trunk neural crest cells can be multipotent, giving rise not only to cells in multiple neural crest derivatives, but also to both neuronal and nonneuronal elements within a given derivative.  相似文献   

16.
The cardiac neural crest contains ectomesenchymal and neural anlagen that are necessary for normal heart development. It is not known whether other regions of the neural crest are capable of supporting normal heart development. In the experiments reported herein, quail donor embryos provided cardiac, trunk, or mesencephalic neural crest to replace or add to the chick host cardiac neural crest. Neither trunk nor mesencephalic neural crest was capable of generating ectomesenchyme competent to effect truncal septation. Addition of mesencephalic neural crest resulted in a high incidence of persistent truncus arteriosus, suggesting that ectomesenchyme derived from the mesencephalic region interferes with ectomesenchyme derived from the cardiac neural crest. Derivatives from the trunk neural crest, on the other hand, did not result in abnormal development of the truncal septum. While mesencephalic neural crest seeded the cardiac ganglia with both neurons and supporting cells, this capability was limited in the trunk neural crest to the more mature regions. These studies indicate a predetermination of the ectomesenchymal derivatives of the cranial neural crest and a possible competition of neural anlagen to form neurons and supporting cells in the cardiac ganglia.  相似文献   

17.
Trunk neural crest cells follow a common ventral migratory pathway but are distributed into two distinct locations to form discrete sympathetic and dorsal root ganglia along the vertebrate axis. Although fluorescent cell labeling and time‐lapse studies have recorded complex trunk neural crest cell migratory behaviors, the signals that underlie this dynamic patterning remain unclear. The absence of molecular information has led to a number of mechanistic hypotheses for trunk neural crest cell migration. Here, we review recent data in support of three distinct mechanisms of trunk neural crest cell migration and develop and simulate a computational model based on chemotactic signaling. We show that by integrating the timing and spatial location of multiple chemotactic signals, trunk neural crest cells may be accurately positioned into two distinct targets that correspond to the sympathetic and dorsal root ganglia. In doing so, we honor the contributions of Wilhelm His to his identification of the neural crest and extend the observations of His and others to better understand a complex question in neural crest cell biology.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号