首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth cones of dissociated rat sympathetic neurons developing in culture were fixed with potassium permanganate to visualize vesicular stores of norepinephrine through the formation of granular precipitates. It was found that growth cones contain numerous small granular vesicles (SGV) 40-60 nm in diameter. The majority of the SGV was present in the varicosity of the growth cone but SGV also occurred in filopodia. The SGV appeared in clusters or scattered throughout the varicosity. Treatment of the cultured neurons, before fixation, with reserpine, which depletes catecholamine stores by blocking uptake into vesicles, resulted in the presence of small clear vesicles. In contrast, growth cones of nonadrenergic sensory neurons dissociated from dorsal root ganglia and fixed with permanganate lacked SGV and possessed small clear vesicles. These observations indicate that the growth cones of cultured sympathetic neurons contain norepinephrine, suggest that the norepinephrine is stored in synaptic vesicles, and raise the question whether this transmitter plays a role in early axon-target cell interactions during synapse formation.  相似文献   

2.
Under certain culture conditions, neonatal rat superior cervical ganglion neurons display not only a number of expected adrenergic characteristics but, paradoxically, also certain cholinergic functions such as the development of hexamethonium-sensitive synaptic contacts and accumulation of choline acetyltransferase (ChAc). The purpose of this study was to determine whether the entire population of cultured neurons was aquiring cholinergic capabilities, or whether this phenomenon was restricted to a subpopulation. After 1--6 and 8 wk in culture, neurons were fixed in KMnO4 after incubation in norepinephrine and prepared for electron microscopy analysis of synaptic vesicle content to determine whether vesicles were dense cored or clear. ChAc, acetylcholinesterase (AChE), and DOPA-decarboxylase (DDC) activities were assayed in sister cultures. In the period from 1 to 8 wk in culture, the average ChAc activity per neuron increased 1,100-fold, and the DDC and AChE activities increased 20- and 30-fold, respectively. After 1 wk in culture, 48 of 50 synaptic boutons contained predominantly dense-cored vesicles, but by 8 wk the synaptic vesicle population was predominantly of the clear type. At intermediate times, the vesicle population in many boutons was mixed. The morphology of the synaptic contacts on neuronal surfaces was that characteristic of autonomic systems, with no definite clustering of the vesicles adjacent to the area of contact. Increased vesicle size correlated with increasing age in culture and the presence of a dense core. Considering these data along with available physiological studies, we conclude that these cultures contain one population of neurons that is initially adrenergic. Over time, under conditions of this culture system, this population develops cholinergic mechanisms. That a neuron may, at a given time, express both cholinergic and adrenergic mechanisms is suggested by the approximately equal numbers of clear and dense-cored vesicles in the boutons found at the intermediate times.  相似文献   

3.
Considerable recent study of the development of transmitter status in sympathetic principal neurons, both in vivo and in culture, has produced several surprising findings. In this paper we review work on cultured immature and adult principal neurons dissociated from the superior cervical ganglia of rats. The main points are; 1) Immature principal neurons that display adrenergic properties during the first postnatal week in culture can be shifted to cholinergic status, including formation of functional cholinergic synapses, by coculture with nonneuronal cells (e.g., dissociated heart cells) or by medium conditioned by such cells. Through the use of microcultures that contain only a single neuron grown on heart cells, it has been possible to demonstrate the transition from adrenergic to cholinergic function directly by serial physiological assays of the same neuron at intervals of days or weeks. 2) During this transition, the cultured neurons display adrenergic/cholinergic dual function. This dual function has also been observed in principal neurons isolated from ganglia of adult rats. 3) Some cultured neurons secrete a third transmitter, probably adenosine or a phosphorylated derivative. This purinergic function is expressed with adrenergic or cholinergic function, or with both (triple function). In some cases, the main effect exerted by a neuron on cocultured cardiac myocytes is purinergic.  相似文献   

4.
After a single administration of norepinephrine or DOPA to albino rats there occurred an incorporation of norepinephrine into the adrenergic axons of the heart and its deposition in the form of granules in small synaptic vesicles, about 300 A in diameter. The adrenergic and cholinergic axons can be thus differentiated. The amount of cholinergic axons in the auricles is greater than that of the adrenergic ones. The adrenergic terminals came into the most intimate contact with the cholinergic terminals and with the endothelial cells of the blood capillaries and the myocardial muscle cells. It is supposed that adrenergic fibers can act upon the heart muscle in three ways: by means of presynaptic inhibition through the cholinergic axons, by humoral route, and directly on the myocardial muscle cells.  相似文献   

5.
Dissociated neurons from the newborn rat superior cervical ganglion were grown under conditions which lead to either adrenergic or cholinergic differentiation. Lectins and toxins were used to detect differences in the cell membrane associated with transmitter status, age of the neurons, or location on the neurons. These ligands were made visible in the light or electron microscope by coupling to rhodamine or colloidal gold. The density of binding sites for concanavalin A (Con A), ricin (RCA60), and wheat germ agglutinin (WGA) increased with age in culture on both adrenergic and cholinergic cells. Soybean agglutinin (SBA) binding increased about threefold on adrenergic axons, but failed to increase on neurons induced to become cholinergic by medium conditioned by rat heart cells (CM). The effect of CM on SBA binding paralleled previously described effects of CM on transmitter production; the CM binding pattern developed slowly and was not readily reversible. Mature adrenergic neurons also appeared to bind more WGA than neurons in CM cultures. Tetanus toxin gold binding was uniform, but low, on axons of adrenergic and cholinergic neurons at all ages. In contrast, cholera toxin binding decreased with age on adrenergic axons. Binding sites for SBA and tetanus toxin were found to be less numerous on the cell body surface than on the axonal surface. Thus growth in CM induces fundamental changes in the phenotype of developing sympathetic neurons involving the cell membrane as well as transmitter choice. Differences also appear with maturation and between axonal and somatic cell surface membranes.  相似文献   

6.
The ultrastructure of the innervation of the human ureterovesical junction was studied. Three different nerve terminals were distinguished among the smooth muscle cells. 1. Nerve processes containing predominantly small granular vesicles (40--60 nm in diameter). 2. Other nerve fibres contained predominantly small round agranular vesicles (30--50 nm in diameter). 3. Processes with large granulated vesicles (80--120 nm in diameter). The first type may be adrenergic, the second cholinergic and the third may originate from the local nerve cells. The gap between the nerve fibres and muscle cells was 300 to 500 nm wide and no synaptic thickenings were observed. This suggests that the transmitter may influence several muscle cells, and the different nerve fibres may directly innervate the smooth muscle cells.  相似文献   

7.
Summary Kitten pineal glands were studied cytochemically under normal conditions, after reserpine injection, and after niamid administration. Adrenergic nerve elements were in perivascular spaces while cholinergic terminals were adjacent to pinealocytes, often times in synaptic contact. BA reactions are primarily in dotted vesicles of adrenergic terminals with some reaction in granular vesicles. Positive reaction occurs along neurotubules and membranous structures of adrenergig nerve fibers and terminals indicating membrane-bounded BA's. Niamid increased the number and density of dotted vesicles, and some granular vesicles are increased in density and size. Reserpine produced a loss reaction in dotted vesicles and a loss of vesicle matrix, producing elliptical vesicles. There is loss of reaction of the dotted vesicles, but occasionally, the positive granular reaction remains. Cholinergic terminals demonstrate no changes with either niamid or reserpine. These findings indicate BAs are stored in reserpine sensitive dotted vesicles and membraneous structures. The findings also show that the dotted vesicle matrix is reserpine sensitive and is necessary for storage of the BA's. Possibly biogenic amines cannot be stored or synthesized in terminals unless the matrix of the dotted vesicle is intact.Supported by: HEW Grant No. NS-10326. The University of Texas Medical School at Houston. — Special appreciation to Mrs. Charlotte Smith for her valuable technical assistance. Appreciation to Ciba-Geigy Corporation for supply of Serpasil (reserpine).  相似文献   

8.
Summary A loose network of catecholamine-containing nerves was demonstrated with a fluorescence histochemical method (Falck-Hillarp) in the coiled portion of eccrine sweat glands in the digital pads of macaques after the injection of nialamide and noradrenaline. In the skin of untreated control animals, fluorescent fibers appear only in some of the glands. A systemic administration of reserpine and a local injection of 6-hydroxydopamine (6-OHDA) or 5-hydroxydopamine (5-OHDA) into the digital pad cause a complete disappearance of fluorescent fibers around the glands and blood vessels. Electron micrographs reveal many unmyelinated varicose axon profiles outside the basement membrane of secretory tubules. Most of these profiles contain many small agranular vesicles and a few large dense-cored vesicles (cholinergic terminal), and some have numerous small granular and a few large densecored vesicles (adrenergic terminal).The local injection of 6-OHDA causes various degenerative changes in the adrenergic terminals but the cholinergic ones and the rest of the cellular structure remain intact. The injection of 5-OHDA induces a significant increase of electron-dense granules in the vesicles of adrenergic terminals.The presence of catecholamine and the effects of 6-OHDA and 5-OHDA in the nerve terminals indicate that the innervation of the eccrine sweat glands of macaques consists of cholinergic as well as adrenergic terminals.Publication No. 783 of the Oregon Regional Primate Research Center supported in part by Public Health Service, National Institutes of Health Grant RR 00163 of the Animal Resources Branch, Division of Research Resources.We acknowledge the excellent assistance of Tsutomu Yoshida, Tsuneka zu Fuse, John Ochsner, and Nickolas Roman.  相似文献   

9.
Nilsson  E.  Sporrong  B. 《Cell and tissue research》1970,111(3):404-412
Summary The rabbit SA-node was outlined electrophysiologically and its adrenergic and cholinergic innervation patterns were studied with the electron microscope. Differentiation between adrenergic and cholinergic terminals was achieved by fixation of the specimens in KMnO4 which produces dense-cored synaptic vesicles in adrenergic terminals, whereas synaptic vesicles in cholinergic terminals are empty. It was found that adrenergic and cholinergic nerve terminals often come in close apposition to each other, the distance between adjoining membranes being in the order of 250 Å. At times, faint membrane thickenings could be seen in these places. The available pharmacological, physiological and morphological evidence leaves little room for doubt that cholinergic terminal fibers can influence the adrenergic ones. From mainly morphological evidence it is also postulated that adrenergic terminals influence cholinergic terminals.This work was supported by grants from Åhlén-Stiftelsen, the Faculty of Medicine, University of Lund, Lund, Sweden, the United States Public Health Service (project 06701-04) and the Swedish Medical Research Council (B70-14X-2321-03 and B70-14X-712-05).  相似文献   

10.
Summary This investigation was undertaken to describe the ultrastructure of cardiac ganglia in rabbits from day 18 of gestation to day 35 postpartum. Special attention was directed to the types of synaptic contacts made with the principal neurons and with the small granule-containing cells. The cardiac ganglia in all animals consisted mainly of parasympathetic postganglionic neurons, supporting cells, and small granule-containing (small intensely fluorescent) cells. The neurons received afferent synaptic terminals of two types. One type contained mainly small clear vesicles typical of most cholinergic terminals. The second type contained mainly small dense-core vesicles (these were most prominent after treatment of the animal with 5-hydroxydopamine), and were considered to be adrenergic terminals. These adrenergic terminals are probably part of an inhibitory system in the ganglia. The small granule-containing cells received typical afferent synaptic terminals of the cholinergic type, and also formed specialized contacts with certain axonal terminals. These latter specializations are considered to be reciprocal synapses which probably have a role in modulating ganglionic transmission.Supported by the Kentucky Heart Association and the Heart Association of Louisville and Jefferson County  相似文献   

11.
E Fehér  J Vajda 《Acta anatomica》1979,104(3):340-348
The interneuronal synapses of the urinary bladder in the cat were studied by electron microscopy. The great majority of the fibres containing vesicles are found within the ganglia occurring in the trigonum area. Morphologically differentiated synaptic contacts could be observed on the surface of the local neurons and between the different nerve processes. The presynaptic terminals can be divided into three types based on a combination of synaptic vesicles. Type I terminals, presumably cholinergic synaptic terminals, contain only small clear vesicles of 40-50 nm in diameter. Type II terminals, presumably adrenergic terminals, are characterized by small granulated vesicles of 40-60 nm in diameter. Type III terminals, probably of local origin, contain a variable number of large granulated vesicles of 80-140 nm in diameter. Occasionally, a single nerve fibre contacted several (two or four) other nerve processes forming a typical synapse. In other cases, on one nerve cell soma or on other nerve processes there are two or three different-type nerve terminals establishing synapses. It might be inferred from these observations that convergence and divergence can occur in the local ganglia and that cholinergic and adrenergic synaptic terminals can modulate the ganglionic activity. However, a local circuit also can play an important role in coordinating the function of the bladder.  相似文献   

12.
The interneuronal connections in ganglia of the caudal part of the hen intestinal nerve of Remak are presented as axodendritic and axosomatic synapses and symmetric axo-axonal, dendro-dendritic and axodendritic contacts, often forming complicated complexes. Under conditions of preliminary decentralization or under certain disturbances of nervous connections with the intestine, a part of synapses remains, and a part of them degenerates, this demonstrates participation of peripheral afferent neurons in formation of the synaptic apparatus of the ganglia mentioned. The axonal terminals differentiate by composition of the synaptic vesicles: some contain mainly light agranular vesicles, others--a large amount of granular ones. The characteristic peculiarities of the hen intestinal nerve ganglia, in contrast to analogous mammalian ganglia, are abundant axosomatic synapses in some neurons, and presynaptic terminals, containing a large number of granular vesicles.  相似文献   

13.
Brain Cell Biology - Neurons dissociated from the superior cervical ganglia of newborn rats can be grown under conditions which support either adrenergic or cholinergic differentiation. In both...  相似文献   

14.
Sympathetic neurons that undergo a noradrenergic to cholinergic change in phenotype provide a useful model system to examine the developmental regulation of proteins required to synthesize, store, or remove a particular neurotransmitter. This type of change occurs in the sympathetic sweat gland innervation during development and can be induced in cultured sympathetic neurons by extracts of sweat gland-containing footpads or by leukemia inhibitory factor. Sympathetic neurons initially produce norepinephrine (NE) and contain the vesicular monoamine transporter 2 (VMAT2), which packages NE into vesicles, and the norepinephrine transporter (NET), which removes NE from the synaptic cleft to terminate signaling. We have used a variety of biochemical and molecular techniques to test whether VMAT2 and NET levels decrease in sympathetic neurons which stop producing NE and make acetylcholine. In cultured sympathetic neurons, NET protein and mRNA decreased during the switch to a cholinergic phenotype but VMAT2 mRNA and protein did not decline. NET immunoreactivity disappeared from the developing sweat gland innervation in vivo as it acquired cholinergic properties. Surprisingly, NET simultaneously appeared in sweat gland myoepithelial cells. The presence of NET in myoepithelial cells did not require sympathetic innervation. VMAT2 levels did not decrease as the sweat gland innervation became cholinergic, indicating that NE synthesis and vesicular packaging are not coupled in this system. Thus, production of NE and the transporters required for noradrenergic transmission are not coordinately regulated during cholinergic development.  相似文献   

15.
Summary The uranaffin reaction in rat anococcygeus muscle, which receives a dual innervation of both adrenergic and non-cholinergic, non-adrenergic nerves was examined. Dense reaction product was observed in the vesicular membranes and/or the cores of some synaptic vesicles in the adrenergic nerve terminals. Occasional vesicles were filled up with dense reaction product. In the prominent population of small clear vesicles, however, no dense reaction product was observed. The number of small granular vesicles in the adrenergic nerve terminals was markedly increased after the administration of 5-hydroxydopamine (5-OHDA). These granular vesicles were moderately stained with uranaffin deposit on the cores but their limiting membranes possessed no uranaffin deposit at all.In the non-adrenergic nerve terminals, on the other hand, uranaffin deposit of variable density was observed on the cores of large granular vesicles but never on their limiting membranes or on the small clear vesicles. There was no change in the axon profiles after the administration of 5-OHDA.The possible occurrence of purines in the cores of large granular vesicles in the non-adrenergic nerves is discussed.  相似文献   

16.
Summary Recent physiological studies have indicated an autonomic influence on the secretion of testosterone from Leydig cells in humans and laboratory animals. Furthermore, a few studies have shown enhanced autonomic control of Leydig cell function in immature, relative to mature, laboratory animals. In the current ultrastructural study of the human testicular interstitium the morphology of autonomic components is described from neonatal, childhood and pubertal ages. Autonomic nerve fibers and varicosities with neurotransmitter vesicles are described in proximity to Leydig cells. The observed autonomic terminals are classified by vesicle morphology into three general types: (1) Type I with predominately small agranular vesicles (30–60 nm) and occasional larger granular vesicles (100 nm). This type is morphologically consistent with being cholinergic. (2) Type II with predominately small granular vesicles (30–60 nm), as well as sporadic large granular vesicles. These are morphologically consistent with adrenergic terminals. (3) Type III which exhibit numerous large granular vesicles of mixed size. Evidence of autonomic terminals is encountered most frequently in childhood biopsies, age 3 to 10 years. The neonatal specimen (4 months) is noteworthy in that many of the Schwann cells appear immature and no adrenergic terminals are observed. In contrast, terminals morphologically consistent with being adrenergic are common in the childhood series of biopsies. Although the vast majority of the autonomic terminals are associated with Leydig cells indirectly as boutons en passant, separated by approximately 150 nm to more than a m, evidence of direct contact (20 nm) of autonomic terminals with Leydig cells is presented. These findings provide morphological evidence of frequent indirect and rare direct contact of autonomic nerve terminals with Leydig cells in man.  相似文献   

17.
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously.  相似文献   

18.
Axons in the duodenum, ileum and rectum of the domestic fowl were identified as catecholamine-containing (CA) on the basis of positive reactivity following chromaffin fixation for electron microscopy. CA-axons in association with blood vessels in all regions of the intestine and in non-vascular sites in the small intestine had a 'typical' adrenergic appearance, in that they contained many small granular vesicles (SGV) and variable numbers of large granular vesicles (LGV). In the rectum the non-vascular CA-axon profiles were atypical, in that there were many elongated LGV and few SGV, and the chromaffin reactivity was weak. The nerve profiles in the rectum were dramatically reduced following 6-hydroxydopamine and reserpine treatment and were absent in rectum cultured in the absence of extrinsic ganglia. It was concluded that the profiles, in spite of their low chromaffin reactivity, truely represent CA-axons. The possibility was raised that the atypical morphology and reduced chromaffin reactivity is due to the presence of adrenaline.  相似文献   

19.
Sympathetic neurons, dissociated from superior cervical ganglia of newborn rats, and skeletal muscle cells were grown together in mass cultures containing many neurons (ca. 1000–3000) and myotubes, and in microcultures containing only one to three neurons and one or a few myotubes. When these neurons grow under the influence of certain nonneuronal cells many of them acquire cholinergic functions; in the absence of this influence they remain adrenergic. In the present study, the influence of the skeletal muscle cells was so effective that under certain conditions more than 75% of the neurons expressed cholinergic function as judged by their ability to form excitatory cholinergic synapses with myotubes (from rat and chick) and with each other. Stimulation of single neurons often gave rise in the myotubes to simple (direct) postsynaptic potentials (ejp's) and/or complex responses comprising a burst of ejp's that evoked one or more spikes; it appeared that these complex responses involved the activation of interneuronal pathways. In microcultures, a single neuron often made cholinergic synapses with itself (“autapse”) and/or with another neuron as well as with one or more myotubes. The nicotinic blocking agents, tubocurare (dTC), α-bungarotoxin (α-BuTx), and hexamethonium (C6), attenuated or abolished the ejp's at moderate concentrations; the muscarinic blocker, atropine, was effective only at high concentrations. At several neuron-myotube junctions, the acetylcholine (ACh) receptors had dTC sensitivity similar to adult extrajunctional receptors; however, when different junctions were pooled the average dTC sensitivity was intermediate between that of adult end plate and extrajunctional receptors. The junctional C6 sensitivity was much higher than expected from the action of the drug at the adult mammalian end plate. As in other studies, chemical transmission from neuron to neuron was also nicotinic cholinergic, but the nicotinic receptors on the myotubes were pharmacologically distinct from those on the neurons.  相似文献   

20.
Curarized cutaneous pectoris nerve-muscle preparations from frogs were stimulated at 10/s or at 2/s for periods ranging from 20 min to 4 h. End plate potential were recorded intracellularly and used to estimate the quantity of transmitter secreted during the period of stimulation. At the ends of the periods of stimulation the preparations were either fixed for electron microscopy or treated with black widow spider venom to determine the quantities of transmitter remainind in the terminal. Horseradish peroxidase or dextran was added to the bathing solution and used as a tracer to detect the formation of vesicles from the axolemma. During 4 h of stimulation at 2/s many new vesicles were formed from the axolemma and the quantity of transmitter secreted was several times greater than the quantity in the initial store. After this period of stimulation, the terminals were severely depleted of transmitter, but not of vesicles, and their general morphological organization was normal. During 20 min of stimulation at 10/s the nerve terminals swelled and were severely depleted both of vesicles and of transmitter. During a subsequent hour of rest the changes in morphology were largely reversed, many new vesicles were formed from the axolemma and the stores of transmitter were partially replenished. These results suggest (a) that synaptic vesicles fuse with, and re-form from, the membrane of the nerve terminal during and after stimulation and (b), that the re-formed vesicles can store and release transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号