首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study shows that in trout red blood cells the activity of some amino acid carriers, not directly involved in cell volume regulation, is affected by external osmolality. Glycine uptake has been used as the experimental approach because it was shown previously that it is effected by different carriers, namely the Na+-dependent ASC and Gly systems, as well as the Na+-independent asc and L systems. An increase in the uptake through the Gly system and the two Na+-independent carriers was found, while the ASC system appeared to be downregulated. Those systems whose activities were increased by hypo-osmolality did not share the mechanism by which this increase was obtained. Thus, the Gly system was sensitive to intracellular ionic changes, while the Na+- independent systems were mechanically stimulated, as assessed by the iso-osmotic swelling caused by ammonium chloride. On the other hand, a volume-sensitive transporter may be present in trout red blood cells, which is involved in the swelling-induced glycine movement, as can be deduced from the effect of some inhibitors such as pyridoxal phosphate, DIDS (4,4′-diisothiocyanate-stilbene-2,2′-disulfonic acid) and quinine. Received: 12 February 1996/Revised: 9 September 1996  相似文献   

2.
Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na+. Measurements of 22Na flux, exterior pH change, and membrane potential, ΔΨ (with the dye 3,3′-dipentyloxadicarbocyanine) indicate that the means of Na+ transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H+/Na+ > 1). The resulting large chemical gradient for Na+ (outside > inside), as well as the membrane potential, will drive the transport of 18 amino acids. The 19th, glutamate, is unique in that its accumulation is indifferent to ΔΨ: this amino acid is transported only when a chemical gradient for Na+ is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+ collapses within 1 min, while the large Na+ gradient and glutamate transporting activity persists for 10–15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na+, arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with Vmax and Km comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na+, in an electrically neutral fashion, so that only the chemical component of the Na+ gradient is a driving force. The transport of all amino acids but glutamate is bidirectional. Actively driven efflux can be obtained with reversed Na+ gradients (inside > outside), and passive efflux is considerably enhanced by intravesicle Na+. These results suggest that the transport carriers are functionally symmetrical. On the other hand, noncompetitive inhibition of transport by cysteine (a specific inhibitor of several of the carriers) is only obtained from the vesicle exterior and only for influx: these results suggest that in some respects the carriers are asymmetrical. A protein fraction which binds glutamate has been found in cholate-solubilized H. halobium membranes, with an apparent molecular weight of 50,000. When this fraction (but not the others eluted from an Agarose column) is reconstituted with soybean lipids to yield lipoprotein vesicles, facilitated transport activity is regained. Neither binding nor reconstituted transport depend on the presence of Na+. The kinetics of the transport and of the competitive inhibition by glutamate analogs suggest that the protein fraction responsible is derived from the intact transport system.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.  相似文献   

4.
Our purpose was to determine whether the VEGF ?152 G/A polymorphism could be associated with chronic kidney disease and endothelial dysfunction in hypertensive patients. There were 100 healthy volunteers enrolled into the control group. The group of patients was constituted by 99 consecutively admitted hypertensive patients referred to our Institution by their general practitioner. All patients were treated with anti-hypertensive polytherapy. Presented study revealed that the hypertensive patients bearing the GG genotype were characterized by the highest values of diastolic blood pressure and markers of endothelial damage such as Angiogenin, Endostatin, CRP as well as von Willebrandt factor. In addition, higher number of immature endothelial progenitor cells with CD34+CD133+, CD34+CD133- markers was observed in GG hypertensive carriers while in normotensive individuals no differences were found. Such phenomenon may indicate an increased mobilization of bone-marrow derived endothelial progenitors. It may testify to the preserved compensatory mechanism in chronic kidney disease (CKD) patients until the G3a stage of the disease. Moreover, patients with higher estimated glomerular filtration rate (eGFR) level had lower of vWf and Endostatin values, and higher level of VEGF. Taken together our findings clearly indicate the ?152 GG hypertensive carriers as more prone to develop CKD. We can suspect that the VEGF ?152 GG genotype is strongly associated with hypertension-dependent CKD.  相似文献   

5.
Summary Presynaptic GABAergic nerve terminals accumulate -aminobutyric acid (GABA) by a sodium-dependent carrier mechanism in which two Na+ are co-transported with one GABA. We have examined the influence of external GABA and cations on GABA efflux from3H-GABA loaded rat brain synaptosomes, to determine whether or not the carriers can also mediate GABA efflux. We observed that, in Ca-free media (to minimize Ca-dependent evoked release), external GABA promotes GABA efflux when the medium contains Na+, butinhibits GABA efflux in the absence of Na+. The efflux of GABA into Ca-free media is stimulated by depolarization (either with veratridine or increased external K+). These data, and published data on the internal Na+ dependence of GABA efflux into Ca-free media, indicate that exiting GABA is cotransported with Na+. The stimulatory effect of depolarization is consistent with efflux of Na+ along with the uncharged GABA. The (carrier-mediated) efflux is also stimulated when the carriers cycle inward with Na++GABA. The inhibitory effect of GABA in Na+-free media implies that GABA can bind to unloaded carriers and that the carriers loaded only with GABA cycle very slowly, if at all. Our data, and data from the literature, can be fitted to a simple model with sequential binding of solutes: external GABA binds to the carrier first, and only the free or fully-loaded (with 2Na++1GABA) carriers can cycle. Other binding sequences and random binding, do not fit the experimental observations.  相似文献   

6.
A humoral ouabain-like plasma factor has been observed in patients with essential hypertension (EHT). In the present study, we hypothesized that this humoral factor might be responsible for the elevated cytosolic free calcium concentrations [Ca2+]i seen in these patients. Patients with mild to moderate EHT and their normotensive first degree blood relatives (NTBR) participated in the study. Platelet Na+, K+-ATPase activity was assayed in EHT patients and their NT first-degree relatives. To confirm the ouabain-like activity in plasma from EHT patients, control platelets were incubated with EHT and NTBR plasma and their Na+, K+-ATPase activity was measured. In addition, the effect of EHT plasma on platelet45Ca-uptake was studied. Thein vitro effects of ouabain (10 ΜM) on (i)45Ca-uptake and (ii) [Ca2+]i response in control platelets were also observed. A decreased Na+K+-ATPase activity (P< 0.05) was observed in platelet membranes from EHT patients. Incubation of control platelets with EHT plasma decreased their Na+, K+-ATPase activity (P< 0.01) and increased their45Ca-uptake (P< 0.05). C-18 Sep-Pak filtered hypertensive plasma extracts (containing the ouabain-like fraction) also decreased Na+, K+-ATPase activity (P< 001) in control platelet membranes.In vitro incubation of control platelets with ouabain increased45Ca-uptake (P< 005) and [Ca2+]i response (P< 0.05) in these platelets. Thus it appears that an ouabain-like factor in the EHT plasma may contribute to the elevated platelet [Ca2+]i observed in EHT patients.  相似文献   

7.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

8.
In the present study, the frequency, the activation and the cytokine and chemokine profile of HTLV-1 carriers with or without dermatological lesions were thoroughly described and compared. The results indicated that HTLV-1-infected patients with dermatological lesions have distinct frequency and activation status when compared to asymptomatic carriers. Alterations in the CD4+HLA-DR+, CD8+ T cell, macrophage-like and NKT subsets as well as in the serum chemokines CCL5, CXCL8, CXCL9 and CXCL10 were observed in the HTLV-1-infected group with skin lesions. Additionally, HTLV-1 carriers with dermatological skin lesions showed more frequently high proviral load as compared to asymptomatic carriers. The elevated proviral load in HTLV-1 patients with infectious skin lesions correlated significantly with TNF-α/IL-10 ratio, while the same significant correlation was found for the IL-12/IL-10 ratio and the high proviral load in HTLV-1-infected patients with autoimmune skin lesions. All in all, these results suggest a distinct and unique immunological profile in the peripheral blood of HTLV-1-infected patients with skin disorders, and the different nature of skin lesion observed in these patients may be an outcome of a distinct unbalance of the systemic inflammatory response upon HTLV-1 infection.  相似文献   

9.
The aim of the study was to verify the hypothesis if copper could influence the activity of sodium-transporting systems in erythrocyte membrane that could be related to essential hypertension. The examined group of patients consisted of 15 men with hypertension. The control group was 11 healthy male volunteers. The Na+/H+ exchanger (NHE) activity in erythrocytes was determined according to Orlov et al. The activity of transporting systems (ATP-Na+/K+; co-Na+/K+/Cl; ex-Na+/Li+; free Na+ and K+ outflow [Na+, K+-outflow]) was determined according to Garay's method. The concentration of copper in plasma was assessed using atomic absorption spectrometry. The activity of ATP-Na+/K+ (μmol/L red blood cells [RBCs]/h) in hypertensive patients was 2231.5±657.6 vs 1750.5±291 in the control (p<0.05), the activity of co-Na+/K+/Cl (μmol/L RBCs/h) in hypertensives was 171.3±77.9 vs 150.7±53.9 in the control (NS). Na+-outflow (μmol/L RBCs/h) in hypertensives was 118.3±51.6 vs 113.3±24.4 in the control (NS). The K+-outflow (μmol/L RBCs/h) in hypertensives was 1361.7±545.4 vs 1035.6±188.3 in the control (NS). The activity of ex-Na+/Li+ (μmol/L RBCs/h) in hypertensive patients was 266.1±76.1 vs 204.1±71.6 in the control (p<0.05). NHE activity (mmol/L RBCs/h) in hypertensives was 9.7±2.96 vs 7.7±1.33 in the control (p<0.05). In hypertensive patients, negative correlation was found between the activity of Na+/K+/Cl co-transport and plasma copper concentration (R s=−0.579, p <0.05) and between the activity of ex-Na+/Li+ and plasma copper concentration (R s=−0.508, p<0.05). Plasma copper concentration significantly influences the activity of sodium transporting systems in erythrocyte membrane. Copper supplementation could be expected to provide therapeutic benefits for hypertensive patients.  相似文献   

10.
Human T-cell leukaemia/lymphoma virus type I (HTLV-I) is a retrovirus that has been identified as the causative agent of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other illnesses. HTLV-I infects primarily CD4+ T cells and the transmission occurs through direct cell-to-cell contact. HAM/TSP patients harbor higher proviral loads in peripheral blood lymphocytes than asymptomatic carriers. Also, HAM/TSP patients exhibit a remarkably high number of circulating HTLV-I-specific CD8+ cytotoxic T lymphocytes (CTLs) in the peripheral blood. While CTLs have a protective role by killing the infected cells and lowering the proviral load, a high level of CTLs and their cytotoxicity are believed to be a main cause of the development of HAM/TSP. A mathematical model for HTLV-I infection of CD4+ T cells that incorporates the CD8+ cytotoxic T-cell (CTL) response is investigated. Our mathematical analysis reveals that the system can stabilize at a carrier steady-state with persistent viral infection but no CTL response, or at a HAM/TSP steady-state at which both the viral infection and CTL response are persistent. We also establish two threshold parameters R 0 and R 1, the basic reproduction numbers for viral persistence and for CTL response, respectively. We show that the parameter R 1 can be used to distinguish asymptomatic carriers from HAM/TSP patients, and as an important control parameter for preventing the development of HAM/TSP.  相似文献   

11.
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4+ T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. The CD39 ectonucleotidase receptor is expressed on CD4+ T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39+CD25+) and effector (CD39+CD25) function. Here, we investigated the expression of CD39 on CD4+ T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. The frequency of CD39+ CD4+ T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39+CD25 CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39+CD25+ regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39CD25+ T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4+ T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4+ T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.  相似文献   

12.
摘要 目的:探讨狼疮性肾炎(LN)患者血清中性粒细胞胞外诱捕网(NETs)、肿瘤坏死因子样凋亡微弱诱导剂(TWEAK)、外周血分化簇(CD)4+T/CD8+T比例与疾病活动度及肾脏预后的关系。方法:选取2021年8月~2022年8月川北医学院附属医院肾内科收治的LN患者137例(LN组),根据系统性红斑狼疮疾病活动指数(SLEDAI)-2000评分分为轻度活动组(52例)、中度活动组(45例)、重度活动组(40例)。随访1年,根据肾脏相关终点事件发生情况分为预后不良组(43例)和预后良好组(94例),另选取同期76名体检健康志愿者(对照组)。采用酶联免疫吸附法检测血清NETs、TWEAK水平,流式细胞术检测外周血CD4+T/CD8+T比例。Spearman相关性分析LN患者血清NETs、TWEAK和外周血CD4+T/CD8+T与SLEDAI-2000评分的相关性,多因素Logistic回归分析LN患者预后不良的因素,受试者工作特征曲线分析血清NETs、TWEAK和外周血CD4+T/CD8+T对LN患者预后不良的预测价值。结果:与对照组比较,LN组血清NETs、TWEAK水平升高,外周血CD4+T/CD8+T降低(P<0.05)。轻度活动组、中度活动组、重度活动组血清NETs、TWEAK依次升高,外周血CD4+T/CD8+T依次降低(P<0.05)。LN患者SLEDAI-2000评分与血清NETs、TWEAK呈正相关,与外周血CD4+T/CD8+T呈负相关(P<0.05)。慢性肾脏病分期4期、SLEDAI-2000评分升高、NETs升高、TWEAK升高为LN患者预后不良的独立危险因素,估算肾小球滤过率升高、CD4+T/CD8+T升高为独立保护因素(P<0.05)。血清NETs、TWEAK和外周血CD4+T/CD8+T联合预测LN患者预后不良的曲线下面积为0.943,大于血清NETs、TWEAK和外周血CD4+T/CD8+T单独预测的0.790、0.788、0.799(P<0.05)。结论:LN患者血清NETs、TWEAK水平升高,外周血CD4+T/CD8+T降低,与疾病活动度及肾脏预后不良密切相关,血清NETs、TWEAK联合外周血CD4+T/CD8+T预测LN患者肾脏预后的价值较高。  相似文献   

13.
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4+Foxp3+ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4+Foxp3+ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP+ and LAP Tregs had a similar effector/memory phenotype. However, LAP+ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP negative counterparts. The in vitro immunosuppressive activity of LAP+ Tregs, exerted via a transforming growth factor-β–mediated mechanism, was more potent than that of LAP Tregs. Furthermore, the enrichment of LAP+ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP+ Foxp3+ CD4+ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP+ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.  相似文献   

14.
Duchenne muscular dystrophy: Pathogenetic aspects and genetic prevention   总被引:24,自引:0,他引:24  
H. Moser 《Human genetics》1984,66(1):17-40
Summary Duchenne muscular dystrophy (DMD) is the most common sex linked lethal disease in man (one case in about 4000 male live births). The patients are wheelchair bound around the age of 8–10 years and usually die before the age of 20 years. The mutation rate, estimated by different methods and from different population studies, is in the order of 7×10-5, which is higher than for any other X-linked genetic disease. Moreover, unlike other X linked diseases such as hemophilia A or Lesh-Nyhan's disease, there seems to be no sex difference for the mutation rates in DMD. Several observations of DMD in girls bearing X-autosomal translocations and linkage studies on two X chromosomal DNA restriction fragment length polymorphisms indicate that the DMD locus is situated on the short arm of the X chromosome, between Xp11 and Xp22. It may be of considerable length, and perthaps consisting of actively coding and non-active intervening DNA sequences. Thus unequal crossing over during meiosis in females could theoretically account for a considerable proportion of new mutations.However, there is no structurally or functionally abnormal protein known that might represent the primary gene product, nor has any pathogenetic mechanism leading to the observed biochemical and histological alterations been elucidated. Among the numerous pathogenetic concepts the hypothesis of a structural or/and functional defect of the muscular plasma membrane is still the most attractive. It would explain both the excess of muscular constituents found in serum of patients and carriers, such as creatine kinase (CK), as well as the excessive calcium uptake by dystrophic muscle fibres, which, prior to necrosis, could lead to hypercontraction, rupture of myofilaments in adjacent sarcomeres and by excessive Ca uptake to mitochondrial damage causing crucial energy loss.The results of studies on structural and functional memthrane abnormalities in cells other than muscle tissue, e.g., erythrocytes, lymphocytes and cultured fibroblasts, indicate that the DMD mutation is probably demonstrable in these tissues. However, most of the findings are still difficult to reproduce or even controversial.DMD is an incurable disease; therefore most effort, in research as well as in practical medicine, is concentrated upon its prevention. Unfortunately the disease cannot yet be diagnosed prenatally. Potential DMD carriers among female relatives of the patients may be identified by pathological heterozygote tests, of which determination of serum CK activity is probably still the most reliable method, allowing the detection of about 70% of adult and probably up to 90% of carriers at school age. Because of the high mutation rate, assessment of individual heterozygote risks in female relatives of isolated DMD cases is of special importance. For the calculations a maximum of genealogical and phenotype information on unaffected male and on heterozygote tests in female relatives is needed to obtain credible risk figures. However, estimating a consultand's risk and passing on this information is only one aspect of genetic counselling in DMD. At least as important is information on the medical, psychological and social impacts of the disease (burden) and the possibility of maintaining a long-term contact between the couples at risk and the team involved in medical, genetic and social problems of the disease. Neonatal CK screening for DMD, although without any therapeutical consequence, could theoretically lead to the prevention of secondary cases, accounting for some 15% of all DMD patients born, but an almost equal prevention rate of such cases would be achieved if CK examinations were limited to all boys with delayed motor development during the first 2 years of life. Finally, it is believed that the two most important preventive problems in DMD, carrier detection and prenatal diagnosis, will ultimately be solved by means of the rapidly advancing DNA technology.This work was dedicated to Professor P.E. Becker in honour of his 75th birthday  相似文献   

15.
The protein responsible for the Na+/Li+ exchange activity across the erythrocyte membrane has not been cloned or isolated. It has been suggested that a Na+/H+ exchanger could be responsible for the Na+/Li+ exchange activity across the erythrocyte membrane. Previously, we reported that in the trout erythrocyte, the Li+/H+ exchange activity (mediated by the Na+/H+ exchanger βNHE) and the Na+/Li+ exchange activity respond differently to cAMP, DMA (dimethyl-amiloride) and O2. We concluded that the DMA insensitive Na+/Li+ exchange activity originates from a different protein. To further examine these findings, we measured Li+ efflux in fibroblasts expressing the βNHE as the only Na+/H+ exchanger. Moreover, the internal pH of these cells was monitored with a fluorescent probe. Our findings indicate that acidification of fibroblasts expressing the Na+/H+ exchanger βNHE, induces a Na+ stimulated Li+ efflux activity in trout erythrocytes. This exchange activity, however, is DMA sensitive and therefore differs from the DMA insensitive Na+/Li+ exchange activity. In these fibroblasts no significant DMA insensitive Na+/Li+ exchange activity was found. These results support the hypothesis that the trout erythrocyte Na+/Li+ exchange activity is not mediated by the Na+/H+ exchanger (βNHE) present in these membranes. Received: 6 December 1996/Revised: 11 August 1997  相似文献   

16.
A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.  相似文献   

17.
Myotonic dystrophy (MyD) has been suggested to be a segmental progeroid syndrome in man, as this syndrome has some clinical manifestations of premature aging. Fibroblasts from patients with other progeroid syndromes have been shown to have diminished in vitro lifespans or growth characteristics; therefore, it was of interest to study cellular senescence in fibroblasts from patients with MyD. Fibroblast cultures from patients with Duchenne muscular dystrophy (DMD) were used as additional controls, as premature aging is not associated with this genetic disorder. Primary skin fibroblast cultures obtained from patients with MyD or DMD and from age-sex matched controls were grown in DMEM plus 10% FBS. The in vitro lifespan was determined by either a 1:4 split ratio or with a constant initial inoculum of 1 × 104 cells/cm2, followed by determination of the final density at weekly intervals. Our results demonstrate that there is no difference in the limits of the in vitro lifespan for either the MyD or DMD fibroblast strains compared to the controls. Likewise, no difference could be detected in the growth characteristics of these cells. The only observable difference was that the pooled age-matched controls and MyD cultures had a shorter in vitro lifespan than the DMD group and their pooled controls, a finding expected because of the age of the patients in each group. Unlike the other progeroid syndromes, MyD fibroblasts have normal limits for in vitro lifespan. MyD is probably not closely related to the other premature aging syndromes, although there is an increasing phenotypic expression as a function of age.  相似文献   

18.
Summary An attempt at cytochemical demonstration of acidification proton-translocating ATPase (H+-ATPase) of Golgi complex in rat pancreatic acinar cells has been made by using p-nitrophenylphosphatase (NPPase) cytochemistry which is used for detecting of Na+-K+-ATPase (Mayahara et al. 1980) and gastric H+-K+-ATPase (Fujimoto et al. 1986). K+-independent NPPase activity was observed on the membrane of the trans cisternae of Golgi complex, but not inside of cisternae. The localization of NPPase activity is different from that of acid phosphatase activity where reaction products were seen on the inside of the trans Golgi cisternae. Since this activity was insensitive to vanadate, ouabain and independent of potassium ions, it was distinct from plasma membranous ATPases such as Na+-K+-ATPase and Ca2+-ATPase. The K+-independent NPPase activity was diminished by the inhibitors of H+-ATPase such as N-ethylmaleimide (NEM) and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). The NPPase reaction products were also seen on the membranes of other acidic organelles, i.e., lysosomes, endosomes, autophagosomes and coated vesicles. These results suggest that NPPase activity on the membrane of the Golgi complex and other acidic organelles corresponds with H+-ATPase which plays a role in acidification.  相似文献   

19.
The migration of intestinal epithelial cells from the crypt area to the villus tip is associated with progressive differentiation of these cells. The distribution of (Na+---K+) stimulated adenosinetriphosphatase ((Na+---K+)-ATPase; EC 3.6.1.3) along the intestinal villus may have functional as well as developmental implications. To define this distribution, rat jejunal and ileal segments were incubated in vitro with a citrate solution that dissociates epithelial cells sequentially from villus tip to crypt area. ATPase activity in cell collections from villus tips and crypt areas were compared. The specific activity of (Na+---K+)-ATPase was higher in the villus tip than in the crypt cells of both jejunum and ileum. Crypt cell (Na+---K+)-ATPase activity in the jejunum and ileum were similar. Thus, (Na+---K+)-ATPase activity of villus tip cells in the jejunum was greater than in the ileum. There was no difference in villus tip and crypt cell Mg2+-ATPase activity in either jejunum or ileum. The steep gradient for (Na+---K+)-ATPase along the intestinal villus may signify an improtant difference in Na+ transport between the villus tip and crypt area. The higher level of (Na+---K+)-ATPase activity in the jejunal villi is consistent with the more important role of the jejunum in Na+ and substrate-linked Na+ transport.  相似文献   

20.
Summary The kinetics of K+ and Na+ transport across the membrane of large unilamellar vesicles (L.U.V.) were compared at two pH's, with two carriers: (222)C 10-cryptand (diaza-1, 10-decyl-5-hexaoxa-4,7,13,16,21,24-bicyclo[8.8.8.]hexacosane) and valinomcyin, i.e. an ionizable macrobicyclic amino polyether and a neutral macrocyclic antibiotic. The rate of cation transport by (222)C10 saturated as cation and carrier concentrations rose. The apparent affinity of (222)C10 for K+ was higher and less pH dependent than that for Na+ but resembled the affinity of valinomycin for K+. The efficiency of (222)C10 transport of K+ decreased as the pH fell and the carrier concentration rose, and was about ten times lower than that of valinomycin. Noncompetitive K+/Na+ transport selectivity of (222)C10 decreased as pH, and cation and carrier concentrations rose, and was lower than that of valinomycin. Transport of alkali cations by (222)C10 and valinomycin was noncooperative. Reaction orders in cationn(S) and carrierm(M) varied with the type of cation and carrier and were almost independent of pH;n(S) andm(M) were not respectively dependent on carrier or cation concentrations. The apparent estimated constants for cation translocation by (222)C10 were higher in the presence of Na+ than of K+ due to higher carrier saturation by K+, and decreased as pH and carrier concentration increased. Equilibrium potential was independent of the nature of carrier and transported cation. Results are discussed in terms of the structural, physicochemical and electrical characteristics of carriers and complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号