首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnitine metabolism in the vitamin B-12-deficient rat.   总被引:4,自引:1,他引:3       下载免费PDF全文
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.  相似文献   

2.
When the carnitine pool of fed rats was labelled with tritium, in non-recirculating perfusate of their liver 44% of acid-soluble 3H activity was identified as free carnitine and 47% as short-chain acylcarnitine. Of the latter component acetylcarnitine accounted for 30% and propionylcarnitine for 10% of total acid-soluble. In plasma the contribution of short-chain acylcarnitines to total carnitine in fed, fasted and diabetic rats was 15.6%, 43.1% and 48.0%, respectively. Recirculating perfusion of livers from the same animals revealed that livers from fed rats released short-chain acylcarnitines as much as 56.2% of total and this proportion did not increase further in the other two groups. At the same time, ketone bodies in the perfusate increased gradually in the fed, fasted and diabetic group, paralleling the plasma ketone levels. Although liver supplies the organism with carnitine the increment of plasma short-chain acylcarnitines seen in ketosis is not a result of some extra output by the liver.  相似文献   

3.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

4.
The effects of carnitine on the metabolism of palmitoylcarnitine were studied by using isolated rat liver mitochondria. Particular attention was given to carnitine acyltransferase-mediated interactions between carnitine and the mitochondrial CoA pool. Carnitine concentrations less than 1.25mm resulted in an increased production of acetylcarnitine during palmitoylcarnitine oxidation. Despite this shunting of C2 units to acetylcarnitine formation, no change was observed in the rate of oxygen consumption or major product formation (citrate or acetoacetate). Further, no changes were observed in the mitochondrial content of acetyl-CoA, total acid-soluble CoA or acid-insoluble acyl-CoA. These observations support the concept, based on studies in vivo, that the carnitine/acylcarnitine pool is metabolically sluggish and the acyl-group flux low as compared with the CoA/acyl-CoA pool. Acid-insoluble acyl-CoA content was decreased and CoA content increased at carnitine concentrations greater than 1.25mm. When [14C]carnitine was used in the incubations, it was demonstrated that this resulted from acid-insoluble acylcarnitine formation from intramitochondrial acid-insoluble acyl-CoA mediated by carnitine palmitoyltransferase B. Again, the higher carnitine concentrations resulted in no changes in the rates of oxygen consumption or major product formation. The above effects of carnitine were observed whether citrate or acetoacetate was the major product of oxidation. In contrast, an increase in acetyl-CoA concentration was observed at high carnitine concentrations only when acetoacetate was the product. Since the rate of acetoacetate production was not changed, these higher acetyl-CoA concentrations suggest that a new steady state had been established to maintain acetoacetate-production rates. Since there was no change in acetyl-CoA concentration when citrate was the major product, a change in the activity of the pathway utilizing acetyl-CoA for ketone-body synthesis and the potential regulation of this pathway must be considered.  相似文献   

5.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

6.
The method used here to assess the contribution of liver to plasma acylcarnitine is based on the idea that in rat, shortly after administration of [3H]butyrobetaine the [3H]carnitine appearing in the plasma derives from the liver and so does the acyl moiety of [acyl-3H] carnitine. In the perchloric acid extracts of plasma and liver, the ester fraction of total carnitine was determined by enzymatic analysis and that of [3H]carnitines was determined by high performance liquid chromatography. The ester fraction of total carnitine in the plasma of fed rats was 32.6% while that of [3H]carnitines was 67.9%, 1 h following injection of [3H]butyrobetaine. For 48 h starved rats the equivalent values were 54.2 and 84.0%, respectively. 24 h after the administration of [3H]butyrobetaine, the ester content became the same in the total and [3H]carnitines. That the newly synthesized carnitine was more acylated (67.9 versus 32.6%, fed) indicates that liver exports acyl groups with carnitine as carrier. The observation that the ester fraction in the newly synthesized plasma carnitine increased with fasting (84.0 versus 67.9%) indicates that the surplus plasma acylcarnitine in fasting ketosis derives from the liver. Perfused livers, however, released carnitine with the same ester content (60-61%) whether they were from fed or fasted animals. Probably, the increased plasma [acylcarnitine] in fasting develops not by an increased ester output from the liver but by an altered handling in extrahepatic tissues.  相似文献   

7.
Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 are members of the carnitine system, which are responsible of the regulation of the mitochondrial CoA/acyl-CoA ratio and of supplying substrates for the ß-oxidation to mitochondria. This study, using cross-Linking reagent, Blue native electrophoresis and immunoprecipitation followed by detection with immunoblotting, shows conclusive evidence about the interaction between carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase supporting the channeling of acylcarnitines and carnitine at level of the inner mitochondrial membrane.  相似文献   

8.
Adult rat heart mitochondria were isolated and incubated with [U-14C]hexadecanoyl-CoA or unlabelled hexadecanoyl-CoA. The accumulating CoA and carnitine esters and [NAD+]/[NADH] ratio were measured by HPLC or tandem mass spectrometry. Despite minimal changes in the intramitochondrial [NAD+]/[NADH] ratio, 2, 3-unsaturated and 3-hydroxyacyl esters were observed as well as saturated acyl-CoA and acylcarnitine esters. In addition to acetylcarnitine, significant amounts of butyryl-, hexanoyl-, octanoyl- and decanoylcarnitines were detected and measured. Rat myocardial beta-oxidation is subject to control at the level of 3-hydroxyacyl-CoA dehydrogenase but this control is not due to a simple lack of oxidised NAD. We hypothesise a pool of NAD in contact between the trifunctional protein of beta-oxidation and complex I of the respiratory chain, the turnover of which is responsible for some of the control of beta-oxidation flux. In addition, short- and medium-chain acylcarnitine esters were detected whereas only small amounts of long-chain acylcarnitines were present. This may imply the presence of a mitochondrial carnitine octanoyl transferase or may reflect channelling of long-chain CoA esters so that they are not available for carnitine palmitoyl transferase II activity.  相似文献   

9.
Organic acidurias are genetic disorders of mitochondrial metabolism that lead to the accumulation of organic acids in tissues and biological fluids. It has been demonstrated that interaction of carnitine with the cellular coenzyme A (CoA) pool, through the production of acyl-carnitines, is potentially critical for maintaining normal cellular metabolism under condition of impaired acyl-CoA use and that exposure of humans and other mammals to ethanol leads to impairment of mitochondrial function. The aim of the present study was to evaluate the role of chronic administration of ethanol on urinary excretion of short-chain organic acids and endogenous carnitines in rats. The data reported show that chronic administration of ethanol significantly increases urinary excretion of propionate, methylmalonate, as well as free acetate, butyrate, pyruvate, lactate, and beta-hydroxybutyrate. Chronic administration of propranolol abolished ethanol-dependent accumulation of propionate, suggesting involvement of beta-adrenergic mechanisms. Increased formation of propionate and methylmalonate was associated with decreased plasma carnitine levels and with increased excretion of specific acyl-carnitines, corresponding to the accumulating acyl groups. Our data indicate that chronic alcohol ingestion induces increased excretion of selected organic acids and that the endogenous carnitine pool might exert a protective role against the deleterious effects of accumulating short-chain organic acids.  相似文献   

10.
1-Carnitine was administered to fed rats and the changes in plasma beta-hydroxybutrate concentration and liver acid-insoluble acylcarnitine content were assessed. One hour following injection of carnitine in doses greater than 1 mumol/100 g of body weight there was a dose-dependent increase in liver acid-insoluble acylcarnitine content to levels comparable to those seen in fasting. These increased levels were maintained for a least 2 h following injection. During the period following carnitine administration there was no increase in ketogenesis as evidenced by plasma beta-hydroxybutyrate concentrations. Since acid-insoluble acylcarnitines represent the product of carnitine palmitoyltransferase A, the results are interpreted as contradictory to the theory that this enzyme is rate-limiting and regulatory for ketogenesis.  相似文献   

11.
The work investigated the effects of administration of 2-tetradecylglycidate (TDG), an inhibitor of mitochondrial long-chain fatty acid oxidation, alone or in combination with glucose, on concentrations of free and acylated carnitine in livers and hearts of 48 h-starved rats. The only significant effect of TDG in the heart was to decrease [short-chain acylcarnitine]. This demonstrates that in heart, fat oxidation is linked to the formation of short-chain acylcarnitine. Cardiac [short-chain acylcarnitine] was not significantly decreased by TDG if the rats were also administered glucose, suggesting that acyl CoA derived from glucose may be used for short-chain acylcarnitine formation in TDG-treated rats. TDG significantly decreased in [free carnitine]. No changes in [short-chain acylcarnitine] were observed. This indicates that formation of short-chain acylcarnitine in liver is not determined by the rates of fat oxidation. It was calculated that at least 63% of the acyl-groups esterified to carnitine were generated by intramitochondrial beta-oxidation. The effects of glucose and TDG on hepatic concentrations of free and long-chain acylcarnitine were additive, suggesting that extramitochondrial fat oxidation can contribute to acylcarnitine formation in liver.  相似文献   

12.
Coenzyme A (CoA), its related compounds and acylcarnitine non-competitively inhibited the activity of proline endopeptidase (PEPase) purified from rat liver cytosol. The degree of inhibition was in the order of acyl-CoA greater than CoA greater than dephospho-CoA greater than or equal to acylcarnitine. However, carnitine did not inhibit the enzyme activity. Among the compounds examined, n-decanoyl-CoA showed the highest inhibitory activity (Ki = 9 microM). These results suggest that both the acyl group and CoA contribute to the inhibition of PEPase by acyl-CoA. The abilities of n-decanoyl-CoA and its related compounds to quench the intrinsic fluorescence at 332 nm from PEPase excited at 280 nm, was used as a probe for the binding affinity of the enzyme for these compounds. The quenching of fluorescence by CoA was nearly equal to that by n-decanoyl-CoA. n-Decanoylcarnitine and carnitine were unable to quench the fluorescence. These results indicate that n-decanoyl-CoA at least binds to PEPase through its CoA portion.  相似文献   

13.
1. CoA, acetyl-CoA, long-chain acyl-CoA, carnitine, acetylcarnitine and long-chain acylcarnitine were measured in rat liver under various conditions. 2. Starvation caused an increase in the contents of these intermediates, except that of carnitine. 3. A single dose of ethanol had no effect on CoA content, whereas those of acetyl-CoA, acetylcarnitine and carnitine were increased and those of long-chain acyl-CoA and acylcarnitine were decreased. 4. Four weeks' adaptation to ethanol consumption did not change the effect of ethanol administration on these metabolites. 5. It is suggested that ethanol directly increases hepatic fatty acid synthesis and esterification. It is also suggested that this change is reversible and limited to the period of ethanol oxidation. 6. It is demonstrated that ethanol-induced triglyceride accumulation is not related to carnitine deficiency.  相似文献   

14.
Control of fatty acid metabolism in ischemic and hypoxic hearts   总被引:16,自引:0,他引:16  
The effects of whole heart ischemia on fatty acid metabolism were studied in the isolated, perfused rat heart. A reduction in coronary flow and oxygen consumption resulted in lower rates of palmitate uptake and oxidation to CO2. This decrease in metabolic rate was associated with increased tissue levels of long chain acyl coenzyme A and long chain acylcarnitine. Cellular levels of acetyl-CoA, acetylcarnitine, free CoA, and free carnitine decreased. These changes in CoA and its acyl derivatives indicate that beta oxidation became the limiting step in fatty acid metabolism. The rate of beta oxidation was probably limited by high levels of NADH and FADH2 secondary to a reduced supply of oxygen. Tissue levels of neutral lipids showed a slight increase durning ischemia, but incorporation of [U-14C]palmitate into lipid was not altered significantly. Although both substrates for lipid synthesis were present in higher concentrations during ischemia, compartmentalization of long chain acyl-CoA in the mitochondrial matrix and alpha-glycerol phosphate in the cytosol may have accounted for the relatively low rate of lipid synthesis.  相似文献   

15.
The distribution between carnitine and the acyl derivatives of carnitine reflects changes in the metabolic state of a variety of tissues. Patients with peripheral vascular disease (PVD) develop skeletal muscle ischemia with exertion. This impairment in oxidative metabolism during exercise may result in the generation of acylcarnitines. To test this hypothesis, 11 patients with PVD and 7 age-matched control subjects were evaluated with graded treadmill exercise. Subjects with PVD walked to maximal claudication pain at a peak O2 consumption (VO2) of 19.9 +/- 1.3 ml X kg-1 X min-1 (mean +/- SE). Control subjects were taken to a near-maximal work load at a VO2 of 31.3 +/- 1.0 ml X kg-1 X min-1. In patients with PVD, the plasma concentration of total acid-soluble, long-chain acylcarnitine and total carnitine was increased at peak exercise compared with resting values. Four minutes postexercise, the plasma short-chain acylcarnitine concentration was also increased. In control subjects taken to the higher work load, only the long-chain acylcarnitine concentration was increased at peak exercise. In patients with PVD, plasma short-chain acylcarnitine concentration at rest was negatively correlated with subsequent maximal walking time (r = -0.51, P less than 0.05). In conclusion, acylcarnitines increased in patients with PVD who walked to maximal claudication pain, whereas control subjects did not show equivalent changes even when taken to a higher work load. The relationship between short-chain acylcarnitine concentration at rest and subsequent exercise performance suggests that repeated episodes of ischemia may cause chronic accumulation of short-chain acylcarnitine in plasma in proportion to the severity of disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have previously reported that chronic valproate administration reduced ketonemia in suckling mice and fasting epileptic children. The present study demonstrates that even a single dose of valproate in the therapeutic range for man caused a prolonged reduction of plasma beta-hydroxybutyrate levels in normal infant mice; the plasma glucose concentration was also significantly lowered. In the livers of these animals, there were extraordinary decreases in levels of free coenzyme A, acetyl CoA and free carnitine. Concomitantly concentrations of acid-soluble fatty acid (short-chain, non-acetyl) coenzyme A esters and of acid-insoluble (long-chain) fatty acid carnitine esters increased. There was evidence for inhibition of the metabolic flux through the Krebs citric acid cycle at those enzyme reactions which require coenzyme A. While valproate doubled liver alanine levels, concentrations of liver aspartate, glutamate and glutamine were reduced. All of the valproate-induced metabolite changes can be explained by the decrease of coenzyme A due to the accumulation of acid-soluble (non-acetyl) coenzyme A esters (presumably valproyl CoA and further metabolites). Decreased coenzyme A would limit the activities of one or more enzymes in the pathway of fatty acid oxidation and the Krebs citric acid cycle. Secondary decreases in acetyl CoA would limit both ketogenesis and gluconeogenesis. Decreased levels of selected hepatic amino acids could reflect their use as alternative fuels. The effect of clinical doses of valproate in infant mice may relate to the valproate-associated syndrome of hepatic failure and Reye-like encephalopathy in some infants and children and suggest a simple screen for those who may be at particular risk.  相似文献   

17.
A protocol for the identification and estimation of short-chain esters of carnitine is described; it is useful for the diagnosis of acidemias. By this method, carnitine esters in urine are converted to coenzyme A esters enzymatically with carnitine acetyltransferase (CAT): short-chain acylcarnitine + CoA cat in equilibrium short-chain acyl-CoA + carnitine. The coenzyme A esters are separated by high-performance liquid chromatography using a radial compression system with a C8 Radial-Pak cartridge and a mobile phase containing 0.025 M tetraethylammonium phosphate in a linear gradient of 1 to 50% methanol. Coenzyme A esters are quantitated by integrator determination of the area under the 254-nm absorption peaks. Enzymatic conversion approaches 100% for acetyl and propionyl esters except in the presence of high levels of free carnitine, which lowers the proportion of ester as acyl-CoA at equilibrium. However, since acidemia patients produce urine low in free carnitine, this problem is minimized. The method is rapid and simple and identifies propionic, methylmalonic, and isovaleric acidemias.  相似文献   

18.
CoASH, Mg2+, ATP and (-)-carnitine were found to be essential for the production of palmitoylcarnitine from palmitate by purified barley etio-chloroplasts. It was concluded that long-chain acyl CoA synthetase (palmitoyl CoA synthetase, EC 6.2.1.3) and carnitine long-chain acyl-transferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity were present in the etio-chloroplasts. It is suggested that the long-chain acylcarnitine formed may move more easily through membrane barriers than the long-chain acyl CoA compound. Also or alternatively this enzyme may spare CoA by transferring long-chain acyl groups from long-chain acyl CoA to carnitine.  相似文献   

19.
Carnitine is associated with fatty acid metabolism in plants   总被引:1,自引:0,他引:1  
The finding of acylcarnitines alongside free carnitine in Arabidopsis thaliana and other plant species, using tandem mass spectrometry coupled to liquid chromatography shows a link between carnitine and plant fatty acid metabolism. Moreover the occurrence of both medium- and long-chain acylcarnitines suggests that carnitine is connected to diverse fatty acid metabolic pathways in plant tissues. The carnitine and acylcarnitine contents in plant tissues are respectively a hundred and a thousand times lower than in animal tissues, and acylcarnitines represent less than 2% of the total carnitine pool whereas this percentage reaches 30% in animal tissues. These results suggest that carnitine plays a lesser role in lipid metabolism in plants than it does in animals.  相似文献   

20.
The release of carnitine is an important metabolic function of the liver. In the present study, we have investigated the effect of increased carnitine concentration on the hepatic release of carnitine. Hepatic carnitine concentration was increased in rats by clofibrate treatment. Release of carnitine was investigated as its efflux from perfused liver and its secretion into bile. A significantly smaller proportion of the hepatic pool of carnitine was released into the perfusion medium when carnitine concentration was increased by clofibrate treatment. However, the amount of carnitine released (nmol/g liver) was comparable to that of control rats. Increased carnitine concentration by clofibrate treatment also did not affect the rate of biliary secretion of carnitine. In control rats, nearly 50% of the released carnitine, in both the perfusion medium and bile, was acylcarnitine whereas in clofibrate-treated rats 35% of the released carnitine was acylcarnitine. Release into the perfusion medium was the major route for the hepatic export of carnitine. We conclude that when hepatic carnitine concentration is increased by clofibrate treatment, a smaller proportion of the hepatic carnitine pool is released, but the amount of carnitine released (nmol/g liver) is not greatly different than that from control animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号