首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cholesterol heterogeneity in bovine rod outer segment disk membranes   总被引:1,自引:0,他引:1  
Rod outer segment disk membranes have been used to study visual transduction events. Numerous studies have also focused on protein-lipid interactions in these membranes. The possible heterogeneity of the disk membrane composition has not been addressed in such studies. Freeze fracture studies (Andrews, L. D., and Cohn, A. I. (1979) J. Cell Biol. 81, 215-220; Caldwell, R., and McLaughlin, B. (1985) J. Comp. Neurol. 236, 523-537) suggest a difference in cholesterol content between newly formed and old disks. This potential heterogeneity in disk membrane composition was investigated using digitonin. Osmotically intact bovine rod outer segment disk membranes prepared by Ficoll flotation were separated based on the cholesterol content of the disks. The addition of digitonin to disk membrane suspensions in a one-to-one molar ratio with respect to cholesterol produced an increase in the density of the membranes in proportion to the amount of cholesterol present. The digitonin-treated disks were separated into subpopulations using a sucrose density gradient. Disks were shown to vary in cholesterol to phospholipid ratio from 0.30 to 0.05. The ratio of phospholipid to protein remained constant in all disk subpopulations at approximately 65 phospholipids per protein. No significant change in the fatty acid composition of the disks was observed as a function of change in cholesterol content. This work demonstrates compositional heterogeneity in disk membranes which may ultimately affect function.  相似文献   

2.
Photoreceptor cadherin (prCAD) is a distinctive cadherin family member that is concentrated at the base of rod and cone outer segments and is required for their structural integrity. During retinal development, prCAD localizes to the site of the future outer segment before rhodopsin or other phototransduction proteins. In vivo, prCAD undergoes a single proteolytic cleavage that releases the ectodomain as a soluble fragment. The C-terminal fragment containing the transmembrane and cytosolic domains remains associated with the outer segment. In rds(-/-) retinas, in which outer segment assembly is severely disrupted because of the absence of retinal degeneration slow (RDS)/peripherin, an essential outer segment structural protein, the level of prCAD is increased, whereas the levels of other outer segment proteins are decreased relative to wild type retinas. Additionally, the ratio of intact:cleaved prCAD polypeptides is increased in rds(-/-) retinas. These data imply that prCAD ectodomain cleavage is an integral part of the outer segment assembly process, and they further suggest that outer segment assembly might be driven, at least in part, by the near irreversibility of proteolysis.  相似文献   

3.
Rhodopsin in rod outer segment disk membranes was enzymatically modified by erythrocyte transglutaminase, which linked small primary amines to glutamine residues. In order to avoid formation of protein crosslinks, rhodopsin was first reductively methylated to modify its lysines. From 1.9 to 2.5 mol of putrescine, ethanolamine, or dinitrophenylcadaverine were incorporated into rhodopsin by transglutaminase during 16 h reaction time. A maximum of 3.5 mol of [14C]putrescine was incorporated per mole of rhodopsin during 48 h. Essentially all of the rhodopsin sequence containing the putrescine could be removed by limited proteolysis of the membranes by thermolysin. Glutamine residues in positions 236, 237, 238, and 344 were modified to approximately equal extents, as determined by isolation of the cyanogen bromide peptides of modified rhodopsin followed by further subdigestion of the peptides. The modified glutamine residues are located in the helix V-VI (or F1-F2) connecting loop and in the carboxyl-terminal region of rhodopsin.  相似文献   

4.
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc. Alongside rhodopsin, peripherin/Rom proteins located in the disk rims are thought to be responsible for disk morphology. Here we describe the supramolecular structure of rod outer segment disk membranes and the spatial organization of rhodopsin and peripherin/Rom molecules. Using atomic force microscopy operated in physiological buffer solution, we found that rhodopsin is loosely packed in the central region of the disks, in average about 26?000 molecules covering approximately one third of the disk surface. Peripherin/Rom proteins form dense assemblies in the rim region. A protein-free lipid bilayer girdle separates the rhodopsin and peripherin/Rom domains. The described supramolecular assembly of rhodospin, peripherin/Rom and lipids in native rod outer segment disks is consistent with the functional requirements of photoreception.  相似文献   

5.
Retinal degeneration slow (Rds) is a photoreceptor-specific tetraspanin glycoprotein essential for photoreceptor outer segment (OS) morphogenesis. Over 80 mutations in this protein are associated with several different retinal diseases. Rds forms a mixture of disulfide-linked homomeric dimers, octamers, and higher-order oligomers, with Cys150 playing a crucial role in its oligomerization. Rds also forms noncovalent homo- and hetero-tetramers with its nonglycosylated homologue, Rom-1. Here, we evaluated the subcellular site of Rds oligomerization and the pattern of Rds/Rom-1 complex assembly in several types of knockout mice, including rhodopsin (Rho-/-, lacking rod OS), Rom-1 (Rom-1-/-), neural retina leucine zipper (Nrl-/-, cone-dominant), and in comparison with wild-type (WT, rod-dominant) mice. Oligomerization and the pattern of complex assembly were also evaluated in OS-enriched vs OS-depleted preparations from WT and Rom-1-/- retinas. Velocity sedimentation under reducing- and nonreducing conditions and co-immunoprecipitation experiments showed the presence of Rds mainly as homo- and hetero-tetramers with Rom-1 in the photoreceptor inner segment (IS), while higher-order, disulfide-linked intermediate complexes and oligomers were exclusively present in the photoreceptor OS. Rom-1-independent oligomerization of Rds was observed in Rom-1-/- retinas. The pattern of Rds complexes in cones from Nrl-/- mice was comparable to that in rods from WT mice. On the basis of these findings, we propose that Rds traffics from the IS to the OS as homo- and hetero-tetramers, with subsequent disulfide-linked oligomerization occurring concomitant with OS disc morphogenesis (at either the base of OS or the tip of the connecting cilium). These results suggest that Rds mutations that interfere with tetramer formation can block Rds trafficking to the OS, leading to loss-of-function defects.  相似文献   

6.
Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport.  相似文献   

7.
This study investigated the lipid and fatty acid composition of gecko photoreceptor outer segment membranes which contain the P521 cone-type pigment. The lipids of gecko photoreceptor outer segment membranes were first extracted and separated by thin layer chromatography (TLC) and then analyzed by gas chromatography (GC). Our results show that gecko photoreceptor outer segment membranes contain less phosphatidylethanolamine (PE) and more phosphatidylcholine (PC) and phosphatidylserine (PS) compared with those of bovine and frog. The content of the polyunsaturated fatty acid, docosahexaenoic acid (DHA), in PC and PS is also the highest yet reported (55 and 63%, respectively). These lipid differences may provide some insight into the specific lipid requirements of cone-type pigments.  相似文献   

8.
A model of photoreceptor outer segment (POS) membranes has been proposed, consisting of an equimolar ternary mixture of 1-palmitoyl-2-docosahexaenoylphosphatidylcholine/distearoylphosphatidylcholine/cholesterol. It was shown that, as in membranes made from the raft-forming mixture, in the model of POS membranes, two domains are formed: the raft domain (detergent resistant membranes, DRM), and the bulk domain (detergent soluble membranes, DSM). Saturation-recovery EPR discrimination by oxygen transport method also demonstrated the presence of two domains in this model system in situ at a wide range of temperatures (10-55 degrees C), showing additionally that neither lutein nor zeaxanthin at 1 mol% affect the formation of these domains. These membrane domains have been separated using cold Triton X-100 extraction from a model of POS membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that the macular xanthophylls lutein and zeaxanthin are substantially excluded from DRM and remain concentrated in DSM, a domain enriched in highly unsaturated docosahexaenoyl acid which is abundant in retina membranes. The concentration of xanthophylls in DRM and DSM calculated as the mol ratio of either xanthophyll to total lipid (phospholipid+cholesterol) was 0.0028 and 0.0391, respectively. Thus, xanthophylls are about 14 times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. The obtained results suggest that in POS membranes macular xanthophylls should also be concentrated in domains enriched in polyunsaturated chains.  相似文献   

9.
10.
The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.  相似文献   

11.
The outer segment portion of photoreceptor rod cells is composed of a stacked array of disk membranes. Newly formed disks are found at the base of the rod outer segment (ROS) and are relatively high in membrane cholesterol. Older disks are found at the apical tip of the ROS and are low in membrane cholesterol. Disk membranes were separated based on their membrane cholesterol content and the extent of membrane protein phosphorylation determined. Light induced phosphorylation of ROS disk membrane proteins was investigated using magic angle spinning31P NMR. When intact rod outer segment preparations were stimulated by light, in the presence of endogenously available kinases, membrane proteins located in disks at the base of the ROS were more heavily phosphorylated than those at the tip. SDS-gel electrophoresis of the phosphorylated disk membranes subpopulations identified a phosphoprotein species with a molecular weight of approximately 68–72 kDa that was more heavily phosphorylated in newly formed disks than in old disks. The identity of this phosphoprotein is presently under investigation. When the phosphorylation reaction was carried out in isolated disk membrane preparations with exogenously added co-factors and kinases, there was no preferential protein phosphorylation. Taken collectively, these results suggest that within the ROS there is a protein phosphorylation gradient that maybe indicative of co-factor or kinase heterogeneity.  相似文献   

12.
R D Pates  D Marsh 《Biochemistry》1987,26(1):29-39
Lipid-protein interactions in bovine rod outer segment disk membranes have been studied by using a series of eight stearic acid spin-label probes which were labeled at different carbon atom positions in the chain. In randomly oriented membrane dispersions, the electron spin resonance (ESR) spectra of the C-8, C-9, C-10, C-11, C-12, C-13, and C-14 atom positional isomers all apparently consist of two components. One of the components corresponds closely to the spectra obtained from dispersions of the extracted membrane lipids, and the other, which is characterized by a considerably greater degree of motional restriction of the lipid chains, is induced by the presence of the protein. Digital subtraction has been used to separate the two components. The proportion of the motionally restricted lipid component is approximately constant, independent of the position of the spin-label group, and corresponds to 30-40% of the total spin-label spectral intensity. The hyperfine splitting of the outer maxima in the difference spectra of the motionally restricted component decreases, and concomitantly, the line widths increase with increasing temperature but change relatively little with increasing distance of the spin-label group from the polar head-group region. This indicates that the corresponding chain motions of the protein-interacting lipids lie in the slow-motion regime of spin-label ESR spectroscopy (tau R approximately 10(-8) S) and that the mobility of these lipids increases with increasing temperature but does not vary greatly along the length of the chain. The data from the hyperfine splittings also suggest the existence of a polarity gradient immediately adjacent to the protein surface, as observed in the fluid lipid regions of the membrane. The more fluid lipid component is only slightly perturbed relative to the lipids alone (for label positions 5-14, inclusive), indicating the presence of chain motions on the nanosecond time scale, and the spectra also reveal a similar polarity profile in both lipid and membrane environments. ESR spectra have also been obtained as a function of magnetic field orientation with oriented membrane samples. For the C-14 atom positional isomer, the motionally restricted component is observed to have a large hyperfine splitting, with the magnetic field oriented both parallel and perpendicular to the membrane normal. This indicates that the motionally restricted lipid chains have a broad distribution of orientations at this label position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The activities of enzymes involved in lipid metabolism—phospholipase A2 (PLA2) and phosphatidylethanolamine N-methyltransferase (PE N-MTase)—were found to be differently affected by pre-incubation of rod outer segments (ROS) under protein phosphorylating or dephosphorylating conditions. Exposure to cAMP-dependent protein kinase (PKA), under dark or light conditions, produced a significant increase in PE N-MTase activity, whereas PLA2 activity decreased. Under standard protein kinase C (PKC) phosphorylating conditions in light, PE N-MTase activity was stimulated and PLA2 activity was not affected. When the assays were performed in the dark, both enzymatic activities were unaffected when compared to the corresponding controls. Incubation of ROS membranes in light in the presence of PKC activators phorbol 12,13-dibutyrate (PDBu) and dioctanoylglycerol (DOG) resulted in the same pattern of changes in enzyme activities as described for standard PKC phosphorylating condition. Pre-incubation of membranes with the PKC inhibitor H-7 reduced the stimulation of PDBu on PE N-MTase activity, and had no effect on PLA2 activity in ROS membranes incubated with the phorbol ester. Pre-treatment of isolated ROS with alkaline phosphatase resulted in decreased PE N-MTase activity and produced a significant stimulation of PLA2 activity under dark as well as under light conditions when compared to the corresponding controls. These findings suggest that ROS protein phosphorylation and dephosphorylation modulates PE N-MTase and PLA2 activities in isolated ROS, and that these activities are independently and specifically modulated by particular kinases. Furthermore, dephosphorylation of ROS proteins has the opposite effect to that produced by protein phosphorylation on the enzymes studied.  相似文献   

14.
A model for random cross-linking of identical monomers diffusing in a membrane was formulated to test whether rhodopsin's cross-linking behavior was quantitatively consistent with a monomeric structure. Cross-linking was performed on rhodopsin both in intact retinas and in isolated rod outer segment (ROS) membranes using the reagent glutaraldehyde. The distribution of covalent oligomers formed was analyzed by SDS-polyacrylamide gel electrophoresis and compared to predictions for the random model. A similar analysis was made for ROS membranes cross-linked by diisocyanatohexane and retinas cross-linked by cupric ion complexed with o-phenanthroline. Patterns of cross-linking produced by these three reagents are reasonably consistent with the monomer model. Glutaraldehyde was also used to cross-link the tetrameric protein aldolase in order to verify that cross-linking of a stable oligomer, under conditions comparable to those used for ROS, yielded the pattern predicted for a tetrameric protein having D2 symmetry. This pattern is markedly different from the one for a random-collision model. Moreover, a comparison of rates showed that aldolase cross-linking with glutaraldehyde is significantly faster than cross-linking of membrane-bound rhodopsin. It is concluded that rhodopsin is monomeric in dark-adapted photoreceptor membranes and that the observed cross-linking results from collisions between diffusing rhodopsin molecules.  相似文献   

15.
Landin JS  Katragadda M  Albert AD 《Biochemistry》2001,40(37):11176-11183
The G-protein coupled receptor, rhodopsin, consists of seven transmembrane helices which are buried in the lipid bilayer and are connected by loop domains extending out of the hydrophobic core. The thermal stability of rhodopsin and its bleached form, opsin, was investigated using differential scanning calorimetry (DSC). The thermal transitions were asymmetric, and the temperatures of the thermal transitions were scan rate dependent. This dependence exhibited characteristics of a two-state irreversible denaturation in which intermediate states rapidly proceed to the final irreversible state. These studies suggest that the denaturation of both rhodopsin and opsin is kinetically controlled. The denaturation of the intact protein was compared to three proteolytically cleaved forms of the protein. Trypsin removed nine residues of the carboxyl terminus, papain removed 28 residues of the carboxyl terminus and a portion of the third cytoplasmic loop, and chymotrypsin cleaved cytoplasmic loops 2 and 3. In each of these cases the fragments remained associated as a complex in the membrane. DSC studies were carried out on each of the fragmented proteins. In all of the samples the scan rate dependence of the Tm indicated that the transition was kinetically controlled. Trypsin-proteolyzed protein differed little from the intact protein. However, the activation energy for denaturation was decreased when cytoplasmic loop 3 was cleaved by papain or chymotrypsin. This was observed for both bleached and unbleached samples. In the presence of the chromophore, 11-cis-retinal, the noncovalent interactions among the proteolytic fragments produced by papain and chymotrypsin cleavage were sufficiently strong such that each of the complexes denatured as a unit. Upon bleaching, the papain fragments exhibited a single thermal transition. However, after bleaching, the chymotrypsin fragments exhibited two calorimetric transitions. These data suggest that the loops of rhodopsin exert a stabilizing effect on the protein.  相似文献   

16.
We have used the membrane-permeant charged fluorescent dye, 3,3'-dipropylthiadicarbocyanine iodide (diS-C3[5]), to monitor electrical potentials across the membranes of isolated bovine disks. Calibration curves obtained from experiments where a potential was created across the disk membrane by a potassium concentration gradient and valinomycin showed an approximately linear relation between dye fluorescence and calculated membrane potential from 0 to -120 mV. Light exposure in the presence of the permeant buffer, imidazole, caused a rapid decay of the membrane potential to a new stable level. Addition of CCCP, a proton ionophore, in the dark produced the same effect as illumination. When the permeant buffer, imidazole, was replaced by the impermeant buffer, Hepes, neither light nor CCCP discharged the gradient. We interpret the changes in membrane potential measured upon illumination to be the result of a light-induced increase in the permeability of the disk membrane to protons. A permeant buffer is required to prevent the build-up of a pH gradient which would inhibit the sustained proton flow needed for an observable change in membrane potential.  相似文献   

17.
The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer.  相似文献   

18.
The light-detecting outer segments of vertebrate photoreceptors are cilia. Like other cilia, all materials needed for assembly and maintenance are synthesized in the cell body and transported into the cilium. The highly elaborated nature of the outer segment and its high rate of turnover necessitate unusually high levels of transport into the cilium. In this work, we examine the role of the IFT20 subunit of the intraflagellar transport (IFT) particle in photoreceptor cells. IFT20 was deleted in developing cones by a cone-specific Cre and in mature rods and cones by a tamoxifen-activatable Cre. Loss of IFT20 during cone development leads to opsin accumulation in the inner segment even when the connecting cilium and outer segment are still intact. With time this causes cone cell degeneration. Similarly, deletion of IFT20 in mature rods causes rapid accumulation of rhodopsin in the cell body, where it is concentrated at the Golgi complex. We further show that IFT20, acting both as part of the IFT particle and independent of the particle, binds to rhodopsin and RG-opsin. Since IFT20 dynamically moves between the Golgi complex and the connecting cilium, the current work suggests that rhodopsin and opsins are cargo for IFT transport.  相似文献   

19.
In a previous study, we used differential proteomics to identify retinal proteins whose steady‐state levels were altered in an experimental system in which photoreceptor outer segments were improperly folded. We determined that the steady‐state level of cellular retinol binding protein 1 (CRBP1) was downregulated in eyes lacking organized outer segments. The purpose of this study was to determine if CRBP1 is a plausible candidate for regulating outer segment assembly. We used Morpholinos to directly test the hypothesis that a decreased level of CRBP1 protein was associated with the misfolding of outer segments. Results from these studies indicate that downregulation of CRBP1 protein resulted in aberrant assembly of outer segments. Because CRBP1 plays a dual role in the retina—retinal recycling and generation of retinoic acid—we evaluated both possibilities. Our data demonstrate that outer segment folding was not modified by 11‐cis retinal supplementation, suggesting that CRBP1 influences outer segment assembly through a mechanism unrelated to rhodopsin regeneration. In contrast, retinoic acid is required for the proper organization of nascent outer segment membranes. The localization of CRBP1 within Muller cells and the RPE and its demonstrated role in modulating the proper folding of nascent outer segment membranes through retinoic acid further elucidates the role of these cells in directly influencing photoreceptor physiology. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 623–635, 2010  相似文献   

20.
The ion permeability properties of dark adapted bovine rod outer segment disk membranes were studied using light scattering to monitor osmotic responses of disks to various salts and ionophores. A preparation procedure is presented which provides very fresh rod outer segment material with mostly intact stacked disks, but with perforated plasma membrane. It is shown that in this preparation the disks (or rod sacs) are the only osmotically responding compartments and that these responses can be readily monitored by means of light-scattering techniques. The disk membrane is found under the conditions tested, to possess no measurable permeability to cations Na+, Ca2+, Mg2+ nor the the anions Cl-, Br-, NO3-, SO4(2-), H2PO4- and HPO4(2-). There is a considerable K+ permeability, which can be completely abolished by millimolar amounts of divalent cations. The proton permeability of the disk membrane is found to depend dramatically upon the preparation procedure and duration. The fresher the material used the lower is the proton permeability measured. In our freshest preparations, even after freeze-thawing in liquid nitrogen, the disks exhibit an H+ permeability which is so low that it cannot be measured with the techniques used in this study. Even in mitochondrial or chloroplast membmranes, in which proton gradients and therefore a low proton conductance play an essential role, such low proton permeabilities have not been found. This would suggest that proton gradients across the disk membrane could play an important role in the physiological function of the photoreceptor cell. In summary it can be said that the disk membrane, apparently more than any other natural membrane system studied so far, is capable of retaining ion gradients for extended periods of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号