首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: The uneven distribution of the Ins(1,4,5)P3R [Ins(1,4,5)P3 receptor] within the ER (endoplasmic reticulum) membrane generates spatially complex Ca2+ signals. The ER is a dynamic network, which allows the rapid diffusion of membrane proteins from one part of the cell to another. However, little is known about the localization and the dynamics of the Ins(1,4,5)P3R in the ER of living cells. We have used a MDCK (Madin-Darby canine kidney) clone stably expressing the Ins(1,4,5)P3R1-GFP (where GFP stands for green fluorescent protein) to investigate the effect of cell polarity on the lateral mobility of the Ins(1,4,5)P3R. RESULTS: In non-confluent MDCK cells, the chimaera is homogeneously distributed throughout the ER and the nuclear envelope. FRAP (fluorescence recovery after photobleaching) experiments showed that the receptor can move freely in the ER with a diffusion constant (D=0.01 microm2/s) approx. ten times lower than other ER membrane proteins. In confluent polarized cells, two populations of receptor can be defined: one population is distributed in the cytoplasm and is mobile but with a slower diffusion constant (D=0.004 microm2/s) compared with non-confluent cells, whereas the other population is concentrated at the periphery of the cells and is apparently immobile. CONCLUSIONS: The observed differences in the mobility of the Ins(1,4,5)P3R are most probably due to its interactions with stable protein complexes that form at the periphery of the polarized cells.  相似文献   

2.
Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues.  相似文献   

3.
Information transmission in cells occurs through complex networks of proteins and genes and is relayed through cascades of biochemical modifications, which are typically studied through ordinary differential equations. However, it is becoming increasingly clear that spatial factors can strongly influence chemical information transmission in cells. In this article, we systematically disentangle the effects of space in signaling cascades. This is done by examining the effects of localization/compartmentalization and diffusion of enzymes and substrates in multiple variants of chemical modification cascades. This includes situations where the modified form of species at one stage 1) acts as an enzyme for the next stage; 2) acts as a substrate for the next stage; and 3) is involved in phosphotransfer. Our analysis reveals the multiple effects of space in signal transduction cascades. Although in some cases space plays a modulatory effect (itself of interest), in other cases, spatial regulation and control can profoundly affect the nature of information processing as a result of the subtle interplay between the patterns of localization of species, diffusion, and the nature of the modification cascades. Our results provide a platform for disentangling the role of space and spatial control in multiple cellular contexts and a basis for engineering spatial control in signaling cascades through localization/compartmentalization.  相似文献   

4.
Imaging molecular interactions in living cells   总被引:3,自引:0,他引:3  
Hormones integrate the activities of their target cells through receptor-modulated cascades of protein interactions that ultimately lead to changes in cellular function. Understanding how the cell assembles these signaling protein complexes is critically important to unraveling disease processes, and to the design of therapeutic strategies. Recent advances in live-cell imaging technologies, combined with the use of genetically encoded fluorescent proteins, now allow the assembly of these signaling protein complexes to be tracked within the organized microenvironment of the living cell. Here, we review some of the recent developments in the application of imaging techniques to measure the dynamic behavior, colocalization, and spatial relationships between proteins in living cells. Where possible, we discuss the application of these different approaches in the context of hormone regulation of nuclear receptor localization, mobility, and interactions in different subcellular compartments. We discuss measurements that define the spatial relationships and dynamics between proteins in living cells including fluorescence colocalization, fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy. These live-cell imaging tools provide an important complement to biochemical and structural biology studies, extending the analysis of protein-protein interactions, protein conformational changes, and the behavior of signaling molecules to their natural environment within the intact cell.  相似文献   

5.
Several lipophilic prodrugs of oligonucleotides (T12 and T20) bearing enzymolabile protecting groups and labeled with fluorescein were synthesized. Their cellular uptake was studied by three different approaches using fluorescence: fluorescence microscopy, flow cytometry and spectrofluorometry. The corresponding prooligonucleotides (pro-oligos) were rapidly and efficiently taken up by HeLa cells and were found homogeneously in the cytoplasm and in the nucleus. The uptake was proportional to their relative lipophilicity and likely proceeded through a passive diffusion mechanism. Uptake followed a dose-response curve. This prooligo approach led to a 2-log increase of uptake in comparison with a T20 phosphorothioate oligonucleotide. Finally, an intracellular concentration of pro-oligo was estimated between 4 and 6 microM for an external concentration of 1 microM and up to 27 microM for an incubation at 10 microM.  相似文献   

6.
The interaction of activated epidermal growth factor receptor (EGFR) with the Src homology 2 (SH2) domain of the growth-factor-receptor binding protein Grb2 initiates signaling through Ras and mitogen-activated protein kinase (MAP kinase) [1,2]. Activation of EGFRs by ligand also triggers rapid endocytosis of EGF-receptor complexes. To analyze the spatiotemporal regulation of EGFR-Grb2 interactions in living cells, we have combined imaging microscopy with a modified method of measuring fluorescence resonance energy transfer (FRET) on a pixel-by-pixel basis using EGFR fused to cyan fluorescent protein (CFP) and Grb2 fused to yellow fluorescent protein (YFP). Efficient energy transfer between CFP and YFP should only occur if CFP and YFP are less than 50A apart, which requires direct interaction of the EGFR and Grb2 fused to these fluorescent moieties [3]. Stimulation by EGF resulted in the recruitment of Grb2-YFP to cellular compartments that contained EGFR-CFP and a large increase in FRET signal amplitude. In particular, FRET measurements indicated that activated EGFR-CFP interacted with Grb2-YFP in membrane ruffles and endosomes. These results demonstrate that signaling via EGFRs can occur in the endosomal compartment. The work also highlights the potential of FRET microscopy in the study of subcellular compartmentalization of protein-protein interactions in living cells.  相似文献   

7.
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.  相似文献   

8.
9.
Ubiquitination regulates many cellular functions, including protein localization and degradation. Each function is specified by unique determinants in the conjugate. Ubiquitinated Jun is localized to lysosomes for degradation. Here, we characterized determinants of Jun ubiquitination and lysosomal localization by using ubiquitin-mediated fluorescence complementation (UbFC) in living cells and analysis of the stoichiometry of ubiquitin linked to Jun extracted from cells. The δ region of Jun and isoleucine-44 in ubiquitin were required for lysosomal localization of the conjugate. Ubiquitin containing only lysine-27, but no other single-lysine ubiquitin, mediated Jun ubiquitination, albeit at lower stoichiometry than wild-type ubiquitin. These conjugates were predominantly nuclear, but coexpression of lysine-27 and lysine-less ubiquitins enhanced the mean stoichiometry of Jun ubiquitination and lysosomal localization of the conjugate. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) and tumor susceptibility gene 101 (TSG101) colocalized with ubiquitinated Jun. Knockdown of HRS or TSG101 inhibited lysosomal localization of ubiquitinated Jun and reduced Jun turnover. Ubiquitination of other Fos and Jun family proteins had distinct effects on their localization. Our results indicate that Jun is polyubiquitinated by E3 ligases that produce lysine-27–linked chains. Lysosomal localization of the conjugate requires determinants in Jun and in ubiquitin that are recognized in part by TSG101 and HRS, facilitating selective translocation and degradation of ubiquitinated Jun.  相似文献   

10.
We have investigated classical nuclear localization sequence (NLS) mediated protein trafficking by measuring biomolecular dynamics within living cells using two-photon fluorescence correlation spectroscopy. By directly observing the behavior of specific molecules in their native cellular environment, it is possible to uncover functional details that are not apparent from traditional biochemical investigations or functional assays. We show that the intracellular mobility of NLS cargoes and their import receptor proteins, karyopherin-α and karyopherin-β, can be robustly measured and that quantitative comparison of intracellular diffusion coefficients provides new insights into nuclear transport mechanisms. Import cargo complexes are assembled throughout the cytoplasm, and their diffusion is slower than predicted by molecular weight due to specific interactions. Analysis of NLS cargo diffusion in the cytoplasm indicates that these interactions are likely disrupted by NLS cargo binding. Our results suggest that delivery of import receptors and NLS cargoes to nuclear pores may complement selective translocation through the pores as a functional mechanism for regulating transport of proteins into the nucleus.  相似文献   

11.
Growing bacterial cells forming division septa have sites near the septa that are sensitive to EDTA shock. Cells treated with EDTA incorporate proteins and other molecules from the surrounding medium, probably via vesiclelike lesions at the septa that are induced by EDTA. The amount of protein taken up is proportional to the protein concentration in the permeabilization medium. Incorporated molecules equilibrate throughout the cytoplasm, and those with affinity for DNA bind to the nucleoid. Conditions that promote the viability of permeabilized cells and help to avoid otherwise irreversible effects of EDTA are defined. Procedures for selecting cells that have incorporated protein and for studying the distribution of the protein and its effects in growing-dividing cells are described. The procedure may have several applications to molecular and cellular biology; however, we describe here the localization in living cells of the histonelike protein HU. Fluorescence microscopy of cells containing different amounts of fluorescein-labeled HU (varied from approximately 10(3) to 10(5) molecules per cell) showed that the HU concentrates in the nucleoid and is uniformly distributed throughout this structure. Control experiments demonstrated that unlabeled interior parts of the nucleoid can be resolved when labeled proteins that do not bind DNA or enter the nucleoid are introduced into living cells. It was concluded that in vivo added HU binds primarily DNA and that there are no intrinsic restrictions on major regions of the nucleoid to which the added HU protein may bind.  相似文献   

12.
The trajectory of a single protein in the cytosol of a living cell contains information about its molecular interactions in its native environment. However, it has remained challenging to accurately resolve and characterize the diffusive states that can manifest in the cytosol using analytical approaches based on simplifying assumptions. Here, we show that multiple intracellular diffusive states can be successfully resolved if sufficient single-molecule trajectory information is available to generate well-sampled distributions of experimental measurements and if experimental biases are taken into account during data analysis. To address the inherent experimental biases in camera-based and MINFLUX-based single-molecule tracking, we use an empirical data analysis framework based on Monte Carlo simulations of confined Brownian motion. This framework is general and adaptable to arbitrary cell geometries and data acquisition parameters employed in two-dimensional or three-dimensional single-molecule tracking. We show that, in addition to determining the diffusion coefficients and populations of prevalent diffusive states, the timescales of diffusive state switching can be determined by stepwise increasing the time window of averaging over subsequent single-molecule displacements. Time-averaged diffusion analysis of single-molecule tracking data may thus provide quantitative insights into binding and unbinding reactions among rapidly diffusing molecules that are integral for cellular functions.  相似文献   

13.
The diffusion of fluorescent particles through a small, illuminated observation volume gives rise to intensity fluctuations caused by particle number fluctuations in the open observation volume and the inhomogeneous excitation-beam profile. The intensity distribution of these fluorescence fluctuations is experimentally captured by the photon-counting histogram (PCH). We recently introduced the theory of the PCH for diffusing particles (Chen et al., Biophys. J., 77:553-567), where we showed that we can uniquely describe the distribution of photon counts with only two parameters for each species: the molecular brightness of the particle and the average number of particles within the observation volume. The PCH is sensitive to the molecular brightness and thus offers the possibility to separate a mixture of fluorescent species into its constituents, based on a difference in their molecular brightness alone. This analysis is complementary to the autocorrelation function, traditionally used in fluorescence fluctuation spectroscopy, which separates a mixture of species by a difference in their diffusion coefficient. The PCH of each individual species is convoluted successively to yield the PCH of the mixture. Successful resolution of the histogram into its components is largely a matter of the signal statistics. Here, we discuss the case of two species in detail and show that a concentration for each species exists, where the signal statistics is optimal. We also discuss the influence of the absolute molecular brightness and the brightness contrast between two species on the resolvability of two species. A binary dye mixture serves as a model system to demonstrate that the molecular brightness and the concentration of each species can be resolved experimentally from a single or from several histograms. We extend our study to biomolecules, where we label proteins with a fluorescent dye and show that a brightness ratio of two can be resolved. The ability to resolve a brightness ratio of two is very important for biological applications.  相似文献   

14.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

15.
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.  相似文献   

16.
The in vitro localization of acridine orange (AO) in living cells was monitored by means of fluorescence microscopy, quantitative cell viability studies, and photofluorimetric measurements following dye-cell interaction. The parameters, pH, time, dye concentration, and the metabolic state of the cell were found to exert a profound influence on the time course and distribution of staining. The parameters studied are mutually interdependent, and intracellular dye localization may be predictably altered by their appropriate manipulation. Conditions are defined whereby two morphologically distinct but physiologically interrelated reactions, namely, acridine orange particle (AOP) formation and cytoplasmic reddening (CR) may be caused, prevented, reversed, or modified. These results are explained in terms of the facilitation or inhibition of an intracytoplasmic dye-segregating mechanism, in turn affected by the rate of dye ingress and the physiological state of the cell. Whereas the accumulation of AO in AOP is compatible with cell viability, the appearance of CR is correlated with cell death. It is pointed out that meaningful interpretation of vital staining requires precise regulation of many parameters in the extracellular milieu. A scheme of cell compartmentalization with respect to AO is proposed to satisfactorily account for the effects of environmental variations on the distribution and ultimate fate of intracellular dye. The AOP are viewed as normally present acid phosphatase-positive multivesicular bodies.  相似文献   

17.
dUTPase prevents uracil incorporation into DNA by strict regulation of the cellular dUTP:dTTP ratio. Lack of the enzyme initiates thymineless cell death, prompting studies on enzyme regulation. We investigated expression pattern and localization of Drosophila dUTPase. Similarly to human, two isoforms of the fly enzyme were identified at both mRNA and protein levels. During larval stages, a drastic decrease of dUTPase expression was demonstrated at the protein level. In contrast, dUTPase mRNAs display constitutive character throughout development. A putative nuclear localization signal was identified in one of the two isoforms. However, immunohistochemistry of ovaries and embryos did not show a clear correlation between the presence of this signal and subcellular localization of the protein, suggesting that the latter may be perturbed by additional factors. Results are in agreement with a multilevel regulation of dUTPase in the Drosophila proteome, possibly involving several interacting protein partners of the enzyme. Using independent approaches, the existence of such macromolecular partners was verified.  相似文献   

18.
All biological reactions depend on the diffusion and re-localization of biomolecules. Our understanding of biological processes requires accurate measurement of biomolecule mobility in living cells. Currently, approaches for investigating the mobility of biomolecules are generally restricted to measuring either fast or slow diffusion kinetics. We describe the development and application of a photoconvertible fluorescent protein, Phamret, that can be highlighted by UV light stimulation inducing a change in fluorescence emission from cyan fluorescent protein (CFP) to photoactivated GFP (PA-GFP). Phamret can be monitored by single excitation-dual emission mode for visualization of molecular dynamics for a broad range of kinetics. We also devised a microscopy-based method to measure the diffusion coefficient from the fluorescence decay after photostimulation of Phamret, enabling analysis of diffusion kinetics ranging from less than 0.1 microm2/s up to approximately 100 microm2/s, and found significant changes in free protein movement during cell-cycle progression.  相似文献   

19.
20.
Recent advances in our understanding of the intracellular trafficking, membrane microenvironment, and subcellular sites of signaling of Ras have been driven by observations of GFP-tagged Ras in living cells. Here, we describe methods to gain further insight into the regulation of these events through the use of quantitative fluorescence microscopy. We focus on three techniques, fluorescence recovery after photobleaching (FRAP), fluorescence loss in photobleaching (FLIP), and selective photobleaching. While all of these techniques exploit photobleaching as a tool to monitor protein dynamics, they each provide a unique subset of information. In particular, FRAP provides measurements of protein mobility via lateral diffusion by monitoring recovery of fluorescence into a region following a single photobleaching event. FLIP assesses the level of continuity and communication between subcellular compartments by repetitively photobleaching a region of interest and following concomitant loss of fluorescence from other areas in the cell. Selective photobleaching reveals kinetic information about active and passive transport of proteins into organelles such as the Golgi complex or between areas of protein enrichment such as caveolae. We describe how to implement these techniques using commercially available confocal microscopes and outline methods for data analysis. Finally, we discuss how these approaches are being used to provide new insights into the mechanisms of membrane microdomain localization, vesicular versus non-vesicular transport, and kinetics of exchange of Ras on and off of cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号