首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+ uptake and IP3-induced Ca2+ release in permeabilized human lymphocytes   总被引:1,自引:0,他引:1  
G Eberl  K Schnell 《FEBS letters》1987,222(2):349-352
The 45Ca2+ uptake and 45Ca2+ release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca2+ uptake into a nonmitochondrial, intracellular Ca2+ store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca2+ uptake. The Ca2+ uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP3 induces dose-dependent 45Ca2+ release. For half-maximum Ca2+ release 0.25-0.5 microM IP3 is required. The results of our studies suggest that 45Ca2+ is predominantly stored within the endoplasmic reticulum of the lymphocytes.  相似文献   

2.
The kinetics of Ca2+ release induced by the second messenger D-myoinositol 1,4,5 trisphosphate (IP3), by the hydrolysis-resistant analogue D-myoinositol 1,4,5 trisphosphorothioate (IPS3), and by micromolar Ca2+ were resolved on a millisecond time scale in the junctional sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The total Ca2+ mobilized by IP3 and IPS3 varied with concentration and with time of exposure. Approximately 5% of the 45Ca2+ passively loaded into the SR was released by 2 microM IPS3 in 150 ms, 10% was released by 10 microM IPS3 in 100 ms, and 20% was released by 50 microM IPS3 in 20 ms. Released 45Ca2+ reached a limiting value of approximately 30% of the original load at a concentration of 10 microM IP3 or 25-50 microM IPS3. Ca(2+)-induced Ca2+ release (CICR) was studied by elevating the extravesicular Ca2+ while maintaining a constant 5-mM intravesicular 45Ca2+. An increase in extravesicular Ca2+ from 7 nM to 10 microM resulted in a release of 55 +/- 7% of the passively loaded 45Ca2+ in 150 ms. CICR was blocked by 5 mM Mg2+ or by 10 microM ruthenium red, but was not blocked by heparin at concentrations as high as 2.5 mg/ml. In contrast, the release produced by IPS3 was not affected by Mg2+ or ruthenium red but was totally inhibited by heparin at concentrations of 2.5 mg/ml or lower. The release produced by 10 microM Ca2+ plus 25 microM IPS3 was similar to that produced by 10 microM Ca2+ alone and suggested that IP3-sensitive channels were present in SR vesicles also containing ruthenium red-sensitive Ca2+ release channels. The junctional SR of rabbit skeletal muscle may thus have two types of intracellular Ca2+ releasing channels displaying fast activation kinetics, namely, IP3-sensitive and Ca(2+)-sensitive channels.  相似文献   

3.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

4.
Smooth muscle-mediated expansion and contraction of the vascular sinusoids of the corpora cavernosa may modulate male erectile function. To elucidate the biochemical events that control erection by promoting or inhibiting contraction of cavernosal smooth muscle, tissue from a potent man was grown in cell culture. The cells grew as noncontractile cultures, but had the following smooth muscle cell properties: These cells expressed desmin, the muscle cell-specific intermediate filament protein. They accumulated 45Ca2+ from the medium, which was released by exposure to the ionophore A23187, to cyclic nucleotides (cyclic guanosine 5'-monophosphate [GMP] much greater than cyclic adenosine 3',5'-monophosphate [AMP]), and to the phosphodiesterase inhibitor, papaverine; and; they accumulated Ca2+ in an ATP-dependent manner when the cultured cells were permeabilized by digitonin extraction. ATP-dependent Ca2+ uptake was inhibited approximately 80% by ruthenium red and simulated by cyclic GMP much greater than cyclic AMP. Inositol 1,4,5-trisphosphate (IP3), which is thought to mediate the release of Ca2+ by the smooth muscle cell sarcoplasmic reticulum in vivo, released approximately 0.85 pmol Ca2+/million cells from the digitonin-extracted cells. IP3-dependent release occurred in the presence of ruthenium red and was not affected by cyclic GMP or cyclic AMP. These results indicate that smooth muscle from this human source can be grown successfully in cell culture and that the biochemical pathways that regulate tension in vivo may be perpetuated in vitro. Moreover, some of the clinical responses to drugs administered in situ for erectile dysfunction (e.g. papaverine) may be the result of altered cavernosal smooth muscle cell Ca2+ exchange and may be mediated by cyclic GMP.  相似文献   

5.
We have studied the rise in intracellular calcium concentration ([Ca2+]i) elicited in macrophages stimulated by platelet-activating factor (PAF) by using fura-2 measurements in individual cells. The [Ca2+]i increase begins with a massive and rapid release of Ca2+ from intracellular stores. We have examined the mechanism of this Ca2+ release, which has been generally assumed to be triggered by inositol trisphosphate (IP3). First, we confirmed that IP3 plays an important role in the initiation of the PAF-induced [Ca2+]i rise. The arguments are 1) an increase in IP3 concentration is observed after PAF stimulation; 2) injection of IP3 mimics the response to PAF; and 3) after introduction of heparin in the cell with a patch-clamp electrode, the PAF response is abolished. Second, we investigated the possibility of an involvement of Ca(2+)-induced Ca2+ release (CICR) in the development of the Ca2+ response. Ionomycin was found to elicit a massive Ca2+ response that was inhibited by ruthenium red or octanol and potentiated by caffeine. The PAF response was also inhibited by ruthenium red or octanol and potentiated by caffeine, suggesting that CICR plays a physiological role in these cells. Because our results indicate that in this preparation IP3 production is not sensitive to [Ca2+]i, CICR appears as a primary mechanism of positive feedback in the Ca2+ response. Taken together, the results suggest that the response to PAF involves an IP3-induced [Ca2+]i rise followed by CICR.  相似文献   

6.
Calcium concentrations of various pancreatic B cell organelles have been determined by X-ray microanalysis of areas of frozen sections of unfixed rat islets of Langerhans. Highest concentrations were detected in storage granules and in mitochondria, although calcium was also present in nuclei, in areas of endoplasmic reticulum and of cytoplasm. Accumulation of 45Ca by isolated organelles has been studied in homogenates and isolated subcellular fractions of rat islets of Langerhans. In the presence of a permeant anion (oxalate or phosphate), accumulation of 45Ca into mitochondria and microsomes was strongly stimulated by ATP. This net uptake was diminished during incubation of homogenates or of a mitochondria plus storage granule-rich fraction in the presence of cyclic AMP, dibutyryl cyclic GMP; 2:4-dinitrophenol or of ruthenium red. Investigations of the characteristics of 45Ca accumulation by homogenates prepared from storage granule-depleted islets showed no differences from those of normal islets, suggesting that the granules do not represent an important labile pool of calcium. With the exception of cyclic AMP and cyclic GMP none of the insulin secretagogues tested (glucose, leucine, arginine, adrenalin, noradrenalin, theophylline, glibenclamide) altered calcium accumulation by islet homogenates. On the basis of absolute calcium levels and of 45Ca uptake studies it is concluded that islet B cells contain a readily exchangeable mitochondrial calcium pool, and an endoplasmic reticulum pool containing a lower concentration of calcium which is also readily exchangeable. The storage granules, despite their high calcium content, do not appear to constitute a labile pool. It seems likely that the labile mitochondria and endoplasmic reticulum pools play a predominant role in the regulation of cytoplasmic free calcium levels, which may in turn be important in the regulation of rates of insulin secretion.  相似文献   

7.
Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria   总被引:1,自引:0,他引:1  
The release of Ca2+ from respiring rat liver mitochondria following the addition of either ruthenium red or an uncoupler was measured by a Ca2+-selective electrode or by 45Ca2+ technique. Ba2+ ions are asymmetric inhibitors of both Ca2+ release processes. Ba2+ ions in a concentration of 75 microM inhibited the ruthenium red and the uncoupler induced Ca2+ release by 80% and 50%, respectively. For the inhibition, it was necessary that Ba2+ ions entered the matrix space: Ba2+ ions did not cause any inhibition of Ca2+ release if addition of either ruthenium red or the uncoupler preceded that of Ba2+. The time required for the development of the inhibition of the Ca2+ release and the time course of 140Ba2+ uptake ran in parallel. Ba2+ accumulation is mediated through the Ca2+ uniporter as 140Ba2+ uptake was competitively inhibited by extramitochondrial Ca2+ and prevented by ruthenium red. Due to the inhibition of the ruthenium red insensitive Ca2+ release, Ba2+ shifted the steady-state extramitochondrial Ca2+ concentration to a lower value. Ba2+ is potentially a useful tool to study mitochondrial Ca2+ transport.  相似文献   

8.
Calcium-induced calcium release (CICR) pools have been demonstrated in brain and heart microsomes biochemically and autoradiographically by the sensitivity of 45Ca2+ accumulation to Mg2+, ATP, ruthenium red, caffeine, and tetracaine. The CICR pool colocalizes with [3H]ryanodine binding sites, supporting the notion that [3H]ryanodine labels CICR pools. Sites of CICR pools in the brain contrast with those of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools with reciprocal localizations between the two Ca2+ pools in several structures. Thus, in the hippocampus CA-1 is enriched in IP3-sensitive Ca2+ pools, whereas CICR pools are highest in CA-3 and the dentate gyrus. The corpus striatum and cerebellum are enriched in IP3 pools, whereas the medial septum and olfactory bulb have high CICR densities. In cardiac tissue, CICR is localized to atrial and ventricular muscle, whereas IP3 pools are concentrated in coronary vessels and cardiac conduction fibers. The reciprocal enrichment of IP3 and CICR Ca2+ pools implies differential regulation of Ca2+ hemostasis in these tissues.  相似文献   

9.
Ca++-uptake and Mg++-Ca++-dependent ATPase activity of skeletal muscle sarcoplasmic reticulum vesicles were reciprocally affected by increasing the oxalate concentration from 0 to 4 mM. At 0-0.1 mM oxalate approximately 17% of the calcium was removed by the vesicles from the medium while the ATPase activity was maximal (approximately 0.66 mumoles Pi mg-1 protein min-1). Between 0.1 to 0.2 mM oxalate the ATPase activity was reduced to one-fifth but the uptake rose sharply and 100% of the 45Ca++ was removed from the medium. The uptake was maintained at this level at oxalate concentrations greater than 0.4 mM but the ATPase activity remained inhibited. The kinetics of Ca++-uptake and ATPase activity were also differentially affected by oxalate. In the presence of oxalate, ruthenium red had only a very slight inhibitory effect on the calcium uptake. Addition of 0.1 mM EGTA removed 80% of the Ca++ from preloaded vesicles within 10 min. The formation of insoluble Ca-oxalate salt on the surface of the vesicle is suggested by these results. Calculations based on the Ksp of the calcium oxalate salt are presented to show its formation and the possible speciation of a Ca-oxalate complex which may affect the Ca++-uptake and ATPase activity.  相似文献   

10.
The addition of inositol 1,4,5-trisphosphate (IP3) to a 45Ca-preloaded human platelet membrane fraction (dense tubular system) induced a transient release of Ca2+. When the vesicle fraction was loaded with 45Ca2+ to isotopic equilibrium in the presence of the catalytic subunit of the cAMP-dependent protein kinase, the level of Ca2+ uptake was increased and the subsequent IP3-induced Ca2+ release was enhanced. The stimulation was observed regardless of the IP3 concentration used, and was maximal with an enzyme concentration of 5 micrograms/ml. The addition of the protein kinase inhibitor prevented the stimulatory effect of the catalytic subunit on IP3-induced calcium release, and also abolished the calcium release detected in the absence of added enzyme. It is concluded that a cAMP-dependent protein phosphorylation may be involved in the regulation of the IP3-induced Ca2+ release in human platelets.  相似文献   

11.
Annexin 7 mobilizes calcium from endoplasmic reticulum stores in brain   总被引:1,自引:0,他引:1  
Mobilization of intracellular calcium from inositol-1,4,5-triphosphate (IP3)-sensitive endoplasmic reticulum (ER) stores plays a prominent role in brain function. Mice heterozygous for the annexin A7 (Anx7) gene have a profound reduction in IP3 receptor function in pancreatic islets along with defective insulin secretion. We examined IP3-sensitive calcium pools in the brains of Anx7 (+/-) mice by utilizing ATP/Mg(2+)-dependent (45)Ca(2+) uptake into brain membrane preparations and tissue sections. Although the Anx7 (+/-) mouse brain displayed similar levels of IP3 binding sites and thapsigargin-sensitive (45)Ca(2+) uptake as that seen in wild-type mouse brain, the Anx7 (+/-) mouse brain Ca(2+) pools showed markedly reduced sensitivity to IP3. A potent and saturable Ca(2+)-releasing effect of recombinant ANX7 protein was demonstrated in mouse and rat brain membrane preparations, which was additive with that of IP3. We propose that ANX7 mobilizes Ca(2+) from an endoplasmic reticulum-like pool, which can be recruited to enhance IP3-mediated Ca(2+) release.  相似文献   

12.
Calcium flux is required for the mammalian sperm acrosome reaction, an exocytotic event triggered by egg binding, which results in a dramatic rise in sperm intracellular calcium. Calcium-dependent membrane fusion results in the release of enzymes that facilitate sperm penetration through the zona pellucida during fertilization. We have characterized inositol 1,4,5-trisphosphate (IP3)-gated calcium channels and upstream components of the phosphoinositide signaling system in mammalian sperm. Peptide antibodies colocalized G alpha q/11 and the beta 1 isoform of phospholipase C (PLC beta 1) to the anterior acrosomal region of mouse sperm. Western blotting using a polyclonal antibody directed against purified brain IP3 receptor (IP3R) identified a specific 260 kD band in 1% Triton X-100 extracts of rat, hamster, mouse and dog sperm. In each species, IP3R immunostaining localized to the acrosome cap. Scatchard analysis of [3H]IP3 binding to rat sperm sonicates revealed a curvilinear plot with high affinity (Kd = 26 nM, Bmax = 30 pmol/mg) and low affinity (Kd = 1.6 microM, Bmax = 550 pmol/mg) binding sites, reflecting among the highest receptor densities in mammalian tissue. Immunoelectron microscopy confirmed the acrosomal localization in rat sperm. The IP3R fractionated with acrosomes by discontinuous sucrose gradient centrifugation and was enriched in the medium of acrosome- reacted sperm. ATP-dependent 45Ca2+ loading of digitonin permeabilized rat sperm was decreased by 45% in the presence of 10 microM IP3. The IP3-mediated release of calcium was blocked by heparin. Thapsigargin, a sequiterpene lactone inhibitor of the microsomal Ca(2+)-ATPase, stimulated the acrosome reaction of mouse sperm to the same extent as the Ca2+ ionophore, A23187. The failure of caffeine and ryanodine to affect calcium accumulation suggested that thapsigargin acted through an IP3-sensitive store. The presence of G alpha q/11, PLC beta 1 and a functional IP3R in the anterior acrosomal region of mammalian sperm, as well as thapsigargin''s induction of the acrosome reaction, implicate IP3-gated calcium release in the mammalian acrosome reaction.  相似文献   

13.
beta-Cell-rich pancreatic islets were microdissected from ob/ob-mice and used for studies of 45Ca uptake and washout. Irrespective of whether the experiments were performed at 21 or 37 degrees C both glucose and phosphate stimulated the net uptake of lanthanum-nondisplaceable 45Ca. The stimulatory effect of phosphate was additive to that produced by glucose. 45Ca incorporated in response to phosphate differed from that taken up in the presence of 20 mM glucose in being easily washed out although it was not affected by the glucose concentration of the washing medium. The efflux of 45Ca was reduced after introducing phosphate into a medium used to perifuse islets which had accumulated 45Ca in response to 20 mM glucose. This suggests that the outward calcium transport can be influenced also by intracellular trapping of the cation. The glucose-stimulated insulin release was inhibited by phosphate; an effect reversed by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. It is concluded that a common effect of glucose and phosphate is to trap calcium in the pancreatic beta-cells but that there are fundamental differences between their effects on intracellular distribution of calcium and on insulin release.  相似文献   

14.
Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45Ca2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45Ca2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45Ca2+ release. IP3 strongly stimulated 45Ca2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45Ca2+ efflux suggests that IP3 activated a Ca2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction.  相似文献   

15.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

16.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

17.
The initial rate of both Ca2+ and Mn2+ uptake is inhibited by ruthenium red to about the same extent as by equivalent concentrations of La3+. The inhibition of Ca2+ uptake, however, is relieved during further incubation with ruthenium red. On preincubating the cells with ruthenium red even a stimulation of divalent cation uptake can be found. Relieve of the inhibition of divalent cation uptake is accompanied by K+ efflux. Both ruthenium red and La3+ displace Ca2+ very effectively from binding sites at the cell surface. The inhibition of initial Ca2+ uptake is accompanied by a reduction in the binding of Ca2+.  相似文献   

18.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

19.
Our previous work has demonstrated that while the Ca(2+) and Pi ions acting in concert function as a potent osteoblast apoptogen, the underlying mechanisms by which it activates cell death is not known. We hypothesize that the ion pair causes release of Ca(2+) from intracellular stores ([Ca(2+)]i); the increase in intracellular calcium prompts the mitochondria to uptake more calcium. This accumulation of calcium eventually results in the loss of mitochondrial membrane potential (MMP) and, subsequently, apoptosis. To test this hypothesis, we evaluated apoptosome formation in MC3T3-E1 osteoblast-like cells treated with the ion pair. Western blot analysis indicated migration of cytochrome-c and Smac/DIABLO from mitochondria to the cytoplasm. Inhibition of either the electron transfer chain (with antimycin a and rotenone), or the activation of a MMP transition (with bongkrekic acid) inhibited apoptosis in a dose-dependent manner. Pre-treating osteoblasts with ruthenium red, a Ca(2+) uniporter inhibitor of both mitochondria and the endoplasmic reticulum (ER), also completely abolished Ca(2+.)Pi-induced apoptosis. Moreover, we showed that an increase in [Ca(2+)]i preceded the increase in MMP over the first 45 min of treatment; a mitochondrial membrane permeability transition was evident at 75 min. To determine the role of ER, Ca(2+) stores in the generation of the apoptotic signal by the ion pair, cells were treated with several inhibitors. Apoptosis was inhibited when cells were treated with dantrolene, an inhibitor of ER ryanodine receptors, and 2-aminodiphenylborate, an IP3 Ca(2+) channel inhibitor, but not cyclopiazonic acid, an ER Ca(2)-ATPase inhibitor. Together, these data demonstrate that Ca(2+) Pi-induced osteoblast apoptosis is characterized by the generation of an apoptosome and that Ca(2+) release from ER stores may promote ion pair-dependent cell death.  相似文献   

20.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号