首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A comparative study of two strains of Lactobacillus plantarum (REB1 and MLBPL1) grown in commercial medium (MRS broth), cucumber juice, and liquid pig feed was performed to explore changes to the metabolic pathways of these bacteria, using a proteomics approach (two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry) combined with analyses of fermentable sugars and fermentation end products. The protein expression showed that even with an excess of glucose in all media, both strains could metabolize different carbohydrates simultaneously and that hexoses could also be used via a phosphoketolase pathway with preferential expression in liquid feed. Sugar analyses showed that the fermentation of sugars was homolactic for all media, with some heterolactic activity in liquid feed, as shown by the production of acetate. Cucumber juice (the medium with the highest glucose content) showed the lowest hexose consumption (10%), followed by liquid feed (33%) and MRS broth (50%). However, bacterial growth was significantly higher in cucumber juice and liquid feed than in MRS broth. This discrepancy was due to the growth benefit obtained from the utilization of the malate present in cucumber juice and liquid feed. Despite different growth conditions, the synthesis of essential cellular components and the stress response of the bacteria were unaffected. This study has improved our understanding of the mechanisms involved in the growth performance of an appropriate lactic acid bacterium strain to be used for food and feed fermentation, information that is of crucial importance to obtain a high-quality fermented product.  相似文献   

2.
目的对长双歧杆菌液态发酵培养基进行优化。方法以长双歧杆菌(Bifidobacteriumlongum)为发酵菌株,以MRS培养基为基础培养基,以发酵液活菌数为指标,通过单因素添加实验考察发酵培养基的碳源和氮源的种类,并验证优化后培养基的效果。结果优化后培养基的最适碳源为葡萄糖,最适氮源为酪蛋白胨、牛肉蛋白胨、水解乳蛋白,发酵液活菌数达到2.09×10^9CFU/mL,比原MRS培养基(1.22×10^9CFU/mL)提高了71.30%。结论优化后培养基优于原MRS基础培养基,可应用于长双歧杆菌的液态发酵。  相似文献   

3.
The influence of species of Acetobacter and Gluconobacter upon growth of the wine yeasts Saccharomyces cerevisiae, Kloeckera apiculata and Candida stellata was examined during mixed culture in grape juice. Acetobacter pasteurianus, A. aceti and Gluconobacter oxydans grew in conjunction with yeasts during juice fermentation. As determined by viable counts, yeast growth was only slightly impaired by the presence of bacteria. However, as judged by the concentrations of glucose, fructose, ethanol, glycerol, acetaldehyde, ethyl acetate, iso -amyl alcohol and organic acids in the fermented juice, acetic acid bacteria significantly influenced the alcoholic fermentation by yeasts.  相似文献   

4.
Kombucha is a health-promoting fermented beverage traditionally made by fermenting a sweetened tea with a symbiotic culture of yeast species and acetic acid bacteria. The aim of this work was to develop a beverage using red grape juice as an alternative substrate. Grape juice contains various nutrient elements and phytochemicals, such as polyphenols, which possess a wide range of biological activities. We investigated the chemical characteristics and sensory and antimicrobial activities of the fermented grape juice Kombucha beverage. The pH decreased from 3.95 to 2.9 during the fermentation process and remained fairly constant thereafter, and the acetic acid bacteria and yeast counts in the broth increased up to 6 days of fermentation and subsequently decreased. Phenolic and anthocyanin contents and the antioxidant activity of the fermented beverage were higher after fermentation, with the maximum increase observed on the sixth day of fermentation when values were approximately 2.47- and 1.59-fold higher than pre-fermentation values, respectively, as assessed by 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) radical scavenging assays. Fourier transform infrared spectroscopy was used for the qualitative analysis of the grape juice before and after fermentation. Distinct peak variations in the spectral region between 2500 and 1650 cm?1 were observed, which matched the appearance of organic acids and changes in phenolic compounds. Fermented juice Kombucha showed antibacterial activity toward all tested bacteria, which can be primarily ascribed to the increased production of acetic acid, but also to the biosynthesis of other metabolites, during the fermentation process. The 6-day fermented juice was the most appreciated by the taste panel based on the overall quality evaluation; with prolongation of fermentation the fermented juice acquired a distinct sour flavor.  相似文献   

5.
The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; K(La) in the fermentors, 0.41 mmoles of O(2) per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content.  相似文献   

6.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.  相似文献   

7.
Venus J 《Biotechnology journal》2006,1(12):1428-1432
Originally, lactic acid was produced from pure substrates like glucose. Increasingly, however, agricultural feedstocks such as grains and green biomass are also being used as raw materials for the biotechnological production of lactic acid. A high-productivity lactic acid bacterium strain was selected, process parameters were optimized for the batch fermentation on a laboratory scale, and its performance at cultivation on a barley hydrolysate medium together with different supplements was examined. The present results for the cultivation of the Lactobacillus paracasei on complex nutrient broth are in the same range as those for another strain of the same species with pure glucose, de Man, Rogosa and Sharpe medium (MRS) minerals, peptone and yeast extract. Under these conditions, this strain was able to accumulate more than 100 g lactate/L in the MRS medium. Medium optimization experiments showed that the main part of the nitrogen-containing nutrients in the medium (peptone, yeast extract) can be replaced by protein extracts from green biomass (lucerne green juice). The green juice after pressing fresh biomass contains a series of nitrogen-containing compounds and inorganic salts, which are essential for cell growth. Thus, on laboratory scale, we have demonstrated that it is possible to substitute synthetic nutrients by renewable resources like cereals and green biomass without any loss of productivity. This high biomass concentration together with the number of living cells could increase the productivity to higher levels compared to the well-adapted synthetic nutrients of MRS.  相似文献   

8.
Summary The pink-pigmented, amylolytic and pectinolytic bacterium Clostridium puniceum in anaerobic batch culture at pH 5.5 and 25–30°C produced butan-1-ol as the major product of fermentation of glucose or starch. The alcohol was formed throughout the exponential phase of growth and surprisingly little acetone was simultaneously produced. Furthermore, acetic and butyric acids were only accumulated in low concentrations, and under optimal conditions were completely re-utilised before the fermentation ceased. Thus, in a minimal medium containing 4% w/v glucose as sole source of carbon and energy, after 65 h at 25°C, pH 5.5 all of the glucose had been consumed to yield (g product/100 g glucose utilised) butanol 32, acetone 3 and ethanol 2. Butanol was again the major product of glucose fermentation during phosphate-limited chemostat culture wherein, although the organism eventually lost its capacity to sporulate and to synthesize granulose, production of butanol continued for at least 100 volume changes. Under no growth condition was the organism capable of producing more than 13.3 g l-1 of butanol. At pH 5.5, growth on pectin was slow and yielded a markedly lesser biomass concentration than when growth was on glucose or starch; acetic acid was the major fermentation product with lower concentrations of methanol, acetone, butanol and butyric acid. At pH 7, growth on all substrates produced virtually no solvents but high concentrations of both acetic and butyric acids.  相似文献   

9.
Probiotication of tomato juice by lactic acid bacteria   总被引:1,自引:0,他引:1  
This study was undertaken to determine the suitability of tomato juice as a raw material for production of probiotic juice by four lactic acid bacteria (Latobacillus acidophilus LA39, Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Tomato juice was inoculated with a 24-h-old culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were measured. The lactic acid cultures reduced the pH to 4.1 or below and increased the acidity to 0.65% or higher, and the viable cell counts (CFU) reached nearly 1.0 to 9.0 x 10(9)/ml after 72 h fermentation. The viable cell counts of the four lactic acid bacteria in the fermented tomato juice ranged from 10(6) to 10(8) CFU/ml after 4 weeks of cold storage at 4 degrees C. Probiotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products.  相似文献   

10.
Lactobacillus plantarum BF001 produced plantaricin F in MRS broth but it was detected only after ca a 50-fold concentration. Growth on MRS broth and appearance of plantaricin F were similar under aerobic and anaerobic conditions. No growth occurred at pH 3 or at 4°C. Plantaricin F appeared first at early stationary growth phase (24 h) and was stable thereafter (pH 2). Amounts found in liquid cultures were ca 2–3 times higher than those from solidified MRS medium, and specific activities were ca 6 times higher in liquid culture (48 h). Maximal amounts of plantaricin F were found (48 h) when medium had an initial pH of 4 and growth was at 30°C. Under these conditions, cell growth and fermentation were partially uncoupled. Plantaricin F was not produced endogenously, organic nutrients were necessary. A molecular weight range of 500–3500 Da was indicated. Plantaricin F appears to be a secondary metabolite.  相似文献   

11.
The influence of pH on growth, enterocin P production and glucose consumption by Enterococcus faecium P13 was studied during anaerobic batch fermentation in MRS broth at 32 degrees C in a fermentor. Growth and glucose consumption were maximal at pH 7.0. Enterocin P production displayed primary metabolite kinetics and was strongly dependent on pH. A maximum antimicrobial activity of 1,949 bacteriocin units (BU) ml(-1) was obtained at pH 6.0, which represented a four-fold increase compared with the antimicrobial activity obtained without pH regulation. The pH exerted a marked effect on the decrease in bacteriocin activity, with the decrease being maximal at pH 7.0. In this report, we propose models for the growth of E. faecium P13 as well as enterocin P production and inactivation. Enterocin P production decreased when potentially stress-inducing compounds (NaCl or ethanol) were included in the growth medium.  相似文献   

12.
Mannitol has long been known as a product of glucose metabolism by some strains of Aspergillus. Apparently no concerted effort, has been made to develop a practical fermentation process to make mannitol. Work at the Northern Laboratory has shown that nearly all strains of white Aspergillus produce significant amounts of mannitol; many strains of black Aspergillus also have this characteristic. Aspergillus candidus NRRL 305 is an exceptionally good mannitol producer. Studies on a fermentation process were conducted in 20-1, stainless steel fermentors, without baffles. Czapek-Dox medium, modified by addition of corn meal, yeast extract, and enzymatically hydrolyzed casein was the most satisfactory medium tested. Suitable increments of glucose were fed daily to the fermentors. The duration of the fermentation was from 10 to 16 days. The effects of agitation, aeration, temperature, and pH of the medium were studied. Under optimal conditions yields of mannitol approached 50% of the glucose consumed.  相似文献   

13.
The bioconversion of xylose into xylitol in fed-batch fermentation with a recombinantSaccharomyces cerevisiae strain, transformed with the xylose-reductase gene ofPichia stipitis, was studied. When only xylose was fed into the fermentor, the production of xylitol continued until the ethanol that had been produced during an initial growth phase on glucose, was depleted. It was concluded that ethanol acted as a redox-balance-retaining co-substrate. The conversion of high amounts of xylose into xylitol required the addition of ethanol to the feed solution. Under O2-limited conditions, acetic acid accumulated in the fermentation broth, causing poisoning of the yeast at low extracellular pH. Acetic acid toxicity could be avoided by either increasing the pH from 4.5 to 6.5 or by more effective aeration, leading to the further metabolism of acetic acid into cell mass. The best xylitol/ethanol yield, 2.4 gg–1 was achieved under O2-limited conditions. Under anaerobic conditions ethanol could not be used as a co-substrate, because the cell cannot produce ATP for maintenance requirements from ethanol anaerobically. The specific rate of xylitol production decreased with increasing aeration. The initial volumetric productivity increased when xylose was added in portions rather than by continuous feeding, due to a more complete saturation of the transport system and the xylose reductase enzyme.  相似文献   

14.
The ability of Klebsiella oxytoca NRRL-B199 to use either lactose or the mixture of glucose and galactose as substrate for the production of 2,3-butanediol was studied in batch fermentations with different conditions of aeration and pH. 2,3-butanediol was undetected, or present in minute concentration in the fermentation broths with lactose, while it was the main product from glucose+galactose with final concentrations of up to 18.8 g/l in media at pH 6.0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose+galactose medium. These relations suggest that the growth rate is very low on lactose but still considerable on glucose+galactose when aeration rate tends toward zero. Correspondingly, the metabolism is more oxidative in the former medium, yielding mainly acetate as product.Abbreviations CDW cell dry weight  相似文献   

15.
Inhibition by secondary fermentation products may limit the ultimate productivity of new glucose to ethanol fermentation processes. New processes are under development whereby ethanol is selectively removed from the fermenting broth to eliminate ethanol inhibition effects. These processes can concentrate minor secondary products to the point where they become toxic to the yeast. Vacuum fermentation selectively concentrates nonvolatile products in the fermentation broth. Membrane fermentation systems may concentrate large molecules which are sterically blocked from membrane transport. Extractive fermentation systems, employing nonpolar solvents, may concentrate small organic acids. By-product production rates and inhibition levels in continuous fermentation with Saccharomyces cerevisiae have been determined for acetaldehyde, glycerol, formic, lactic, and acetic acids, 1-propanol, 2-methyl-1-butanol, and 2,3-butanediol to assess the potential effects of these by-products on new fermentation processes. Mechanisms are proposed for the various inhibition effects observed.  相似文献   

16.
Growth and survival of Pseudomonas pseudomallei in acidic environments.   总被引:1,自引:0,他引:1  
A study was made on the growth and survival of Pseudomonas pseudomallei in culture environments differing in nutrients, initial pH, and aeration, in comparison with Pseudomonas cepacia and Pseudomonas aeruginosa. The observations led us to a view that P. pseudomallei has the highest adaptability to acidic environments among the three species. Unlike the other species, it grew in heart infusion broth of initial pH 4.5 under aeration and survived keeping a high level (10(9) per ml) of viable counts for as long as 30 days. This sort of adaptation was found to be more evident in the media of poor nutrition and under limited aeration.  相似文献   

17.
A method for the accumulation of the streptomycin precursor (L) in the culture broth of Streptomyces griseus was developed and the precursor was successfully isolated from the broth.

When the microorganism was cultured under shaking in the glucose-meat extract-peptone medium (0.5% glucose, 0.2% yeast extract, 0.2% meat extract, 0.4% peptone, 0.5% sodium chloride, 0.025% magnesium sulfate, pH 7.0), the accumulation of the precursor in the broth was induced by the addition of supplementary glucose (e.g., 2 g glucose per 100 ml broth) 24 hr after inoculation followed by further cultivation for 48 hr. Increased accumulation of L component was obtained merely by increasing glucose content in the culture medium (e.g., 5% glucose-containing medium in the above-indicated one) instead of glucose supplement on the way of fermentation. For the accumulation of a large amount of L component in a culture broth, it looked to be necessary for pH value of the broth to be maintained between 6 and 7 during fermentation.

L component was isolated from the culture broth by adsorption on Amberlite IRC-50 and elution with 2% NaCl solution. The L component was separated on this column from contaminated streptomycin which requires 5% NaCl solution to be eluted. The L component in the 2% NaCl eluate was adsorbed on active carbon at neutral or slightly alkaline pH and eluted with 95% methanol at acidic pH, Partially purified L component precipitated as hydrochloride by addition of acetone to the methanol extract which had been concentrated in vacuo.  相似文献   

18.
优化益生菌Lactobacillus casei Zhang高密度培养条件   总被引:1,自引:0,他引:1  
为实现L. casei Zhang的高密度培养,在之前优化增殖培养基的基础上进一步寻求适宜该菌的培养条件。研究了不同中和剂、缓冲盐浓度、葡萄糖浓度、pH值控制、通气条件和补料分批培养对菌体在恒pH条件下发酵的影响,根据不同条件下菌体的比生长速率、菌体密度和活菌数情况,确定L. casei Zhang较适宜的高密度培养条件为:培养基葡萄糖浓度为80 g/L~100 g/L,以氨水为中和剂使pH保持5.9,采用间歇通氮气的方法保持环境厌氧,分批培养方式下37°C保温发酵10 h~12 h后,L. casei Zhang细胞干重达到7 g/L,活菌数3.5×1010 CFU/mL,比优化前提高7倍以上,能够满足益生菌制品生产要求的高菌体密度。  相似文献   

19.
Glucose and citrate are two major carbon sources in fruits or fruit juices such as orange juice. Their metabolism and the microorganisms involved in their degradation were studied by inoculating with an aliquot of fermented orange juice a synthetic model medium containing glucose and citrate. At pH 3.6, their degradation led, first, to the formation of ethanol due to the activity of yeasts fermenting glucose and, eventually, to the formation of acetate resulting from the activity of lactobacilli. The yeast population always outcompeted the lactobacilli even when the fermented orange juice used as inoculum was mixed with fermented beet leaves containing a wider variety of lactic acid bacteria. The evolution of the medium remained similar between pH 3.3 and 5.0. At pH 3.0 or below, the fermentation of citrate was totally inhibited. Saccharomyces cerevisiae and Lactobacillus plantarum were identified as the only dominant microorganisms. The evolution of the model medium with the complex microbial community was successfully reconstituted with a defined coculture of S. cerevisiae and L. plantarum. The study of the fermentation of the defined model medium with a reconstituted microbial community allows us to better understand the behavior not only of fermented orange juice but also of many other fruit fermentations utilized for the production of alcoholic beverages.  相似文献   

20.
Glucose and citrate are two major carbon sources in fruits or fruit juices such as orange juice. Their metabolism and the microorganisms involved in their degradation were studied by inoculating with an aliquot of fermented orange juice a synthetic model medium containing glucose and citrate. At pH 3.6, their degradation led, first, to the formation of ethanol due to the activity of yeasts fermenting glucose and, eventually, to the formation of acetate resulting from the activity of lactobacilli. The yeast population always outcompeted the lactobacilli even when the fermented orange juice used as inoculum was mixed with fermented beet leaves containing a wider variety of lactic acid bacteria. The evolution of the medium remained similar between pH 3.3 and 5.0. At pH 3.0 or below, the fermentation of citrate was totally inhibited. Saccharomyces cerevisiae and Lactobacillus plantarum were identified as the only dominant microorganisms. The evolution of the model medium with the complex microbial community was successfully reconstituted with a defined coculture of S. cerevisiae and L. plantarum. The study of the fermentation of the defined model medium with a reconstituted microbial community allows us to better understand the behavior not only of fermented orange juice but also of many other fruit fermentations utilized for the production of alcoholic beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号