首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
S100A6 (calcyclin) is a calcium binding protein with two EF‐hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non‐transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by β‐galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function. J. Cell. Biochem. 109: 576–584, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
7.
8.
S100A6 (calcyclin), a member of the S100 family of EF-hand Ca2+ binding proteins, has been implicated in the regulation of cell growth and proliferation. We have previously shown that S100B, another member of the S100 family, is induced postinfarction and limits the hypertrophic response of surviving cardiac myocytes. We presently report that S100A6 expression is also increased in the periinfarct zone of rat heart postinfarction and in cultured neonatal rat myocytes by treatment with several trophic agents, including platelet-derived growth factor (PDGF), the alpha1-adrenergic agonist phenylephrine (PE), and angiotensin II (AII). Cotransfection of S100A6 in cultured neonatal rat cardiac myocytes inhibits induction of the cardiac fetal gene promoters skeletal alpha-actin (skACT) and beta-myosin heavy chain (beta-MHC) by PDGF, PE, AII, and the prostaglandin F2alpha (PGF2alpha), induction of the S100B promoter by PE, and induction of the alpha-MHC promoter by triiodothyronine (T3). By contrast, S100B cotransfection selectively inhibited only PE induction of skACT and beta-MHC promoters. Fluorescence microscopy demonstrated overlapping intracellular distribution of S100B and S100A6 in transfected myocytes and in postinfarct myocardium but heterodimerization of the two proteins could not be detected by co-immunoprecipitation. We conclude that S100A6 may function as a global negative modulator of differentiated cardiac gene expression comparable to its putative role in cell cycle progression of dividing cells.  相似文献   

9.
10.
S100A6 - New facts and features   总被引:1,自引:0,他引:1  
S100A6 (calcyclin) is a 10.5 kDa Ca2+-binding protein that belongs to the S100 protein family. S100A6 contains two EF-hand motifs responsible for binding of Ca2+. It also binds Zn2+ through not yet identified structures. Binding of Ca2+ induces a conformational change in the S100A6 molecule which in consequence increases its overall hydrophobicity and allows for interaction with target proteins. S100A6 was found in different mammalian and avian (chicken) tissues. A high level of S100A6 is observed in epithelial cells, fibroblasts and in different kinds of cancer cells. The function of S100A6 is not clear at present, but it has been suggested that it may be involved in cell proliferation, cytoskeletal dynamics and tumorigenesis. Additionally, S100A6 might have some extracellular activities. This review presents new facts and features concerning the S100A6 protein.  相似文献   

11.
The cellular response to genotoxic stress is a complex cascade of events including altered protein expression, interactions, modifications, and relocalization, leading to cell cycle arrest and DNA repair or to apoptosis. p53 protein has a central role in this process, and p53 status is an important factor in the response of a tumor to genotoxic anticancer therapy. We studied p53-related changes postexposure to ionizing radiation using top-down mass spectrometry. Initially two cell lines were compared, HCT116 p53 wild type (wt) and p53(-/-), in a time course study postirradiation. In the p53 wt cell line a striking increase of a 10.2-kDa protein was detected, and this protein was identified with MS/MS analysis as S100A6. Further MS profiling led to detection of two post-translationally modified variants of S100A6, namely glutathionylated and cysteinylated forms. In p53 wt cells, a specific shift from glutathionylated to cysteinylated S100A6 occurred postirradiation. The p53 dependence of this specific change in protein level and modification pattern of S100A6 postirradiation was confirmed in a panel of four lung cancer cell lines (H23, U1810, H69, and A549) with different p53 status and using small interfering RNA against p53. Interestingly the closely related S100 family protein S100A4 showed the same changes in modification pattern post-ionizing radiation in the p53 wt lung cancer cell line, and S100A4 also showed p53-dependent expression. Using confocal microscopy, relocalization of S100A6 from nucleus to cytosol and a colocalization with tropomyosin in stress fibers was detected in A549 cells postirradiation. This relocalization coincided with the change in S100A6 modification pattern. Based on these results, we suggest that S100A6 and S100A4 are regulated via redox modifications in vivo and that these proteins are involved in the cellular response to genotoxic stress.  相似文献   

12.
Calcyclin (S100A6) is an S100 calcium-binding protein whose expression is up-regulated in proliferating and differentiating cells. A novel 30-kDa protein exhibiting calcium-dependent calcyclin-binding (calcyclin-binding protein, CacyBP) had been identified, purified, and cloned previously (Filipek, A., and Kuznicki, J. (1998) J. Neurochem. 70, 1793-1798). Here, we have defined the calcyclin binding region using limited proteolysis and a set of deletion mutants of CacyBP. A fragment encompassing residues 178-229 (CacyBP-(178-229)) was capable of full binding to calcyclin. CacyBP-(178-229) was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein fragment cleaved from the glutathione S-transferase fusion protein was shown by CD to contain 5% alpha-helix, 15% beta -sheet, and 81% random coil. Fluorescence spectroscopy was used to determine calcyclin dissociation constants of 0.96 and 1.2 microm for intact CacyBP and CacyBP-(178-229), respectively, indicating that the fragment can be used for characterization of calcyclin-CacyBP interactions. NMR analysis of CacyBP-(178-229) binding-induced changes in the chemical shifts of (15)N-enriched calcyclin revealed that CacyBP binding occurs at a discrete site on calcyclin with micromolar affinity.  相似文献   

13.
Endometriosis (EM) is a chronic inflammatory disease affecting women aged between 23 and 42 years with a prevalence of 6%–10%. S100A7, a member of the S100 protein family, has been implicated in promoting inflammation. However, the role of S100A7 in EM and its underlying mechanism remain to be elucidated. S100A7 was silenced or overexpressed in primary endometrial stromal cells (ESCs). Cell proliferation was determined using a Cell Counting Kit-8. Cell cycle/apoptosis was monitored using a flow cytometer. Cell invasion was studied by a Transwell assay. Quantitative RT-PCR and Western blot analyses were used to evaluate gene expression. S100A7 and NF-κB expression is increased in both endometriotic tissue and ESCs from women with EM. The expression of S100A7 is correlated with the expression of NF-κB. S100A7 knockdown inhibits ESCs proliferation, cell cycle progression, cell invasion, and inflammation, but promotes cell apoptosis in an NF-κB dependent manner. In contrast, S100A7 overexpression demonstrated an inverse effect. S100A7 is increased in both endometriotic tissue and ESCs from women with EM. S100A7 overexpression contributes to EM through increasing ESCs proliferation, cell cycle progression, cell invasion, and inflammation, and inhibiting cell apoptosis in the NF-κB dependent manner. These findings highlight the importance of S100A7/NF-κB signaling in EM and provide new insights into therapeutic strategies for EM.  相似文献   

14.
Nacken W  Sorg C  Kerkhoff C 《FEBS letters》2004,572(1-3):289-293
EF-hand proteins are known to translocate to membranes, suggesting that they are involved in signaling events located in the cell membrane. Many proteins involved in signaling events associate cholesterol rich membrane domains, so called lipid rafts, which serve as platforms for controlled protein-protein interaction. Here, we demonstrate that the myeloid expressed EF-hand proteins can be distinguished into three classes with respect to their membrane association. Grancalcin, a myeloid expressed penta EF-hand protein, is constitutively located in lipid rafts. S100A9 (MRP14) and S100A8 (MRP8) are translocated into detergent resistant lipid structures only after calcium activation of the neutrophils. However, the S100A9/A8 membrane association is cholesterol and sphingolipid independent. On the other hand, the association of S100A12 (EN-RAGE) and S100A6 (calcyclin) with membranes is detergent sensitive. These diverse affinities to lipid structures of the myeloid expressed EF-hand proteins most likely reflect their different functions in neutrophils.  相似文献   

15.
16.
17.
The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies, which causes prion disorders partially due to Ca2+ dysregulation. In our previous work, we found that overexpressed PrPC in gastric cancer was involved in apoptosis, cell proliferation, and metastasis of gastric cancer. To better understand how PrPC acts in gastric cancer, a human microarray was performed to select differentially regulated genes that correlate with the biological function of PrPC. The microarray data were analyzed and revealed 3798 genes whose expression increased at least 2-fold in gastric cancer cells transfected with PrPC. These genes encode proteins involved in several aspects of cell biology, among which, we specially detected molecules related to calcium, especially the S100 calcium-binding proteins, and found that PrPC upregulates S100A1, S100A6, S100B, and S100P but downregulates CacyBP in gastric cancer cells. We also found that intracellular Ca2+ levels in cells transfected with PrPC increased, whereas these levels decreased in knockdowns of these cells. Taken together, PrPC might increase intracellular Ca2+, partially through calcium-binding proteins, or PrPC might upregulate the expression of S100 proteins, partially through stimulating the intracellular calcium level in gastric cancer. Though the underlying mechanisms need further exploration, this study provides a new insight into the role of PrPC in gastric cancer and enriches our knowledge of prion protein.  相似文献   

18.
ERC‐55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC‐55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC‐55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC‐55 splicing variants including ERC‐55‐C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub‐cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin‐6, kininogen and lysozyme with ERC‐55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca2+] of ~10?7 M or greater, while calcyclin interaction requires [Ca2+] of >10?5 M. Interaction with peroxiredoxin‐6 is independent of Ca2+. Co‐localization of lactoferrin, S100P and calcyclin with ERC‐55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC‐55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.  相似文献   

19.
The calcium binding S100A8/A9 complex (MRP8/14; calgranulin) is considered as an important proinflammatory mediator in acute and chronic inflammation and has recently gained attention as a molecular marker up-regulated in various human cancers. Here, we report that S100A8/A9 is expressed in breast cancer cell lines and is up-regulated by interleukin-1beta and tumor necrosis factor-alpha in SKBR3 and MCF-7 cells. We identified the phospholipid-binding protein annexin A6 as a potential S100A8/A9 binding protein by affinity chromatography. This finding was verified by Southwestern overlay experiments and by coimmunoprecipitation with the S100A8/A9-specific monoclonal antibody 27E10. Immunocytochemical experiments demonstrated that S100A8/A9 and annexin A6 colocalize in SKBR3 breast cancer cells predominantly in membranous structures. Upon calcium influx both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells. Subcellular fractionation studies suggested that after A23187 stimulation membrane association of S100A8/A9 is not enhanced. However, both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells upon calcium influx. Experiments with artificial liposomes indicated that S100A8/A9 is able to associate with membranes independently of both annexin A6 and independently of calcium. Finally, cell surface expression of S100A8/A9 could not be observed in A23187-treated A431 and HaCaT cells. Both cell lines are known to be devoid of annexin A6. Repression of annexin A6 expression by small interfering RNA in SKBR3 cells abolishes the cell surface exposition of S100A8/A9 upon calcium influx, suggesting that annexin A6 contributes to the calcium-dependent cell surface exposition of the membrane associated-S100A8/A9 complex.  相似文献   

20.
S100A6 is a calcium binding protein belonging to the S100 family. In this work we examined the function of extracellular S100A6. Using mesenchymal stem cells isolated from Wharton's jelly of the umbilical cord (WJMS cells) we have shown that S100A6 is secreted by these cells, and when added to the medium, increases their adhesion and inhibits proliferation. The search for a potential target/receptor of S100A6 in the membrane fraction of WJMS cells allowed us to identify some proteins, among them integrin β1, which interacts with S100A6 in a calcium dependent manner. The interaction between S100A6 and integrin β1, was then confirmed by ELISA using purified proteins. Applying specific antibodies against integrin β1 reversed the effect on cell adhesion and proliferation observed in the presence of S100A6 which indicates that S100A6 exerts its function due to interaction with integrin β1. Since the data show the influence of extracellular S100A6 on cells isolated from Wharton's jelly, our results might help to establish molecular mechanisms leading to some pathologies characteristic for this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号