首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response.  相似文献   

2.
This paper examines the validity of the linlog approach, which was recently developed in our laboratory, by comparison of two different kinetic models for the metabolic network of Escherichia coli. The first model is a complete mechanistic model; the second is an approximative model in which linlog kinetics are applied. The parameters of the linlog model (elasticities) are derived from the mechanistic model. Three different optimization cases are examined. In all cases, the objective is to calculate the enzyme levels that maximize a certain flux while keeping the total amount of enzyme constant and preventing large changes of metabolite concentrations. For an average variation of metabolite levels of 10% and individual changes of a factor 2, the predicted enzyme levels, metabolite concentrations and fluxes of both models are highly similar. This similarity holds for changes in enzyme level of a factor 4-6 and for changes in fluxes up to a factor 6. In all three cases, the predicted optimal enzyme levels could neither have been found by intuition-based approaches, nor on basis of flux control coefficients. This demonstrates that kinetic models are essential tools in Metabolic Engineering. In this respect, the linlog approach is a valuable extension of MCA, since it allows construction of kinetic models, based on MCA parameters, that can be used for constrained optimization problems and are valid for large changes of metabolite and enzyme levels.  相似文献   

3.
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis. The glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis, but it cannot yet be excluded that one of the remaining glycolytic steps is a rate-limiting step for the glycolytic flux.  相似文献   

4.
Metabolic engineering of cellular systems to maximize reaction fluxes or metabolite concentrations still presents a significant challenge by encountering unpredictable instabilities that can be caused by simultaneous or consecutive enhancements of many reaction steps. It can therefore be important to select carefully small subsets of key enzymes for their subsequent stable modification compatible with cell physiology. To address this important problem, we introduce a general mixed integer non-linear problem (MINLP) formulation to compute automatically which enzyme levels should be modulated and which enzyme regulatory structures should be altered to achieve the given optimization goal using non-linear kinetic models of relevant cellular systems. The developed MINLP formulation directly employs a stability analysis constraint and also includes non-linear biophysical constraints to describe homeostasis conditions for metabolite concentrations and protein machinery without any preliminary model simplification (e.g. linlog kinetics approximation). The framework is demonstrated on a well-established large-scale kinetic model of the Escherichia coli central metabolism used for the optimization of the glucose uptake through the phosphotransferase transport system (PTS) and serine biosynthesis. Computational results show that substantial stable improvements can be predicted by manipulating only small subsets of enzyme levels and regulatory structures. This means that while more efforts can be required to elucidate larger stable optimal enzyme level/regulation choices, no further significant increase in the optimized fluxes can be obtained and, therefore, such choices may not be worth the effort due to the potential loss of stability properties. The source for instability through saddle-node and Hopf bifurcations is identified, and all results are contrasted with predictions from metabolic control analysis.  相似文献   

5.
The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements.  相似文献   

6.
Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems.  相似文献   

7.
The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species.  相似文献   

8.
A general sensitivity and control analysis of periodically forced reaction networks with respect to small perturbations in arbitrary network parameters is presented. A well-known property of sensitivity coefficients for periodic processes in dynamical systems is that the coefficients generally become unbounded as time tends to infinity. To circumvent this conceptual obstacle, a relative time or phase variable is introduced so that the periodic sensitivity coefficients can be calculated. By employing the Green's function method, the sensitivity coefficients can be defined using integral control operators that relate small perturbations in the network's parameters and forcing frequency to variations in the metabolite concentrations and reaction fluxes. The properties of such operators do not depend on a particular parameter perturbation and are described by the summation and connectivity relationships within a control-matrix operator equation. The aim of this paper is to derive such a general control-matrix operator equation for periodically forced reaction networks, including metabolic pathways. To illustrate the general method, the two limiting cases of high and low forcing frequency are considered. We also discuss a practically important case where enzyme activities and forcing frequency are modulated simultaneously. We demonstrate the developed framework by calculating the sensitivity and control coefficients for a simple two reaction pathway where enzyme activities enter reaction rates linearly and specifically.  相似文献   

9.
The concentration of a metabolite in a metabolic system can be varied without affecting any other concentrations or any fluxes by varying the concentrations of two inhibitors, one a competitive inhibitor of the enzyme that produces the metabolite, the other a competitive inhibitor of the enzyme that consumes it. The two concentrations need to be varied in opposite directions in such a way that the they add up to 100% when each is expressed as a percentage of the concentration that gives the desired flux in the absence of the other. The general approach can be extended to systems in which the inhibited enzymes do not catalyse consecutive reactions.  相似文献   

10.
11.
The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering interventions on flows in metabolic networks and metabolite concentrations, it does not consider the physiological limitations of the cellular environment and metabolic engineering design constraints. We report here a constraint-based framework, Network Response Analysis (NRA), for rational genetic strain design. NRA is cast as a Mixed-Integer Linear Programming problem that integrates MCA, Thermodynamically-based Flux Analysis (TFA), biologically relevant constraints, as well as genome editing restrictions into a comprehensive platform for identifying metabolic engineering targets. We show that the NRA formulation and its core constraints are equivalent to the ones of Flux Balance Analysis (FBA) and TFA, which allows it to be used for a wide range of optimization criteria and with various physiological constraints. We also show how the parametrization and introduction of biological constraints enhance the NRA formulation compared to the classical MCA approach, and we demonstrate its features and its ability to generate multiple alternative optimal strategies given several user-defined boundaries and objectives. In summary, NRA is a sophisticated alternative to classical MCA for rational metabolic engineering that accommodates the incorporation of physiological data at metabolic flux, metabolite concentration, and enzyme expression levels.  相似文献   

12.
Metabolic engineers have enthusiastically adopted the (13)C-labeling technique as a powerful tool for elucidating fluxes in metabolic networks. This tracer technique makes it possible to determine fluxes that are unobservable using only metabolite balances and allows the elimination of doubtful cofactor balances that are indispensable in flux analysis based on metabolite balancing alone. The (13)C-labeling technique, however, relies on a number of assumptions that are not free from uncertainties. Two possible errors in the models that are needed to determine the metabolic fluxes from labeling data are omitted reactions and ignored occurrence of channeling. By means of two representative examples it is shown that these modeling errors may lead to serious errors in the calculated flux distributions despite the use of labeling data. A complicating fact is that the model errors are not always easily detected as poor models may still yield good fits of experimental data. Results of (13)C-labeling experiments should therefore be interpreted with appropriate caution.  相似文献   

13.
Control analysis of time-dependent metabolic systems   总被引:2,自引:0,他引:2  
Metabolic Control Analysis is extended to time dependent systems. It is assumed that the time derivative of the metabolite concentrations can be written as a linear combination of rate laws, each one of first order with respect to the corresponding enzyme concentration. The definitions of the control and elasticity coefficients are extended, and a new type of coefficient ("time coefficient", "T") is defined. First, we prove that simultaneous changes in all enzyme concentrations by the same arbitrary factor, is equivalent to a change in the time scale. When infinitesimal changes are considered, these arguments lead to the derivation of general summation theorems that link control and time coefficients. The comparison of two systems with identical rates, that only differ in one metabolite concentration, leads to a method for the construction of general connectivity theorems, that relate control and elasticity coefficients. A mathematical proof in matrix form, of the summation and connectivity relationships, for time dependent systems is given. Those relationships allow one to express the control coefficients in terms of the elasticity and time coefficients for the case of unbranched pathway.  相似文献   

14.
The dynamic range of metabolic models can be extended to deal with large perturbations by introducing the related concepts of "generalized" kinetic order and "canonical" sensitivities. Generalized kinetic orders are built as a well-defined non linear combination of the canonical sensitivities coefficients, which in turn are obtained by a least-squares regression on central composite factorial design data. In a such way, the whole domain of the operating variables is mapped without need to determine locally neither the first nor the second order model derivatives. The method was validated through numerical simulations, its predictions being compared with those coming from a Michaelis-Menten formalism taken as reference. In parallel, two variants of the Power-law formalism (S-system, least-squares GMA) also were tested. The canonical sensitivities method produced the widest range to predict metabolite concentrations and metabolic fluxes at the steady states. In addition, the variation pattern for the logarithmic gains and for the characteristic eigenvalues have been accurately determined from a unique overall model, being both required to make realistic analysis in metabolic engineering. The achieved information also can be expressed in terms of those typical coefficients derived from the Metabolic Control Analysis (MCA). Even if current first order Power-law or MCA formalisms were used, the canonical sensitivities approach provides a significant advantage, since complete sets of homologous, accurate, locally valid metabolic coefficients can be simultaneously recovered from the array proposed, being representative of the whole range of the operating variables instead of a unique nominal condition as is usual.  相似文献   

15.
Systems Biology is the science that aims to understand how biological function absent from macromolecules in isolation, arises when they are components of their system. Dedicated to the memory of Reinhart Heinrich, this paper discusses the origin and evolution of the new part of systems biology that relates to metabolic and signal-transduction pathways and extends mathematical biology so as to address postgenomic experimental reality. Various approaches to modeling the dynamics generated by metabolic and signal-transduction pathways are compared. The silicon cell approach aims to describe the intracellular network of interest precisely, by numerically integrating the precise rate equations that characterize the ways macromolecules’ interact with each other. The non-equilibrium thermodynamic or ‘lin–log’ approach approximates the enzyme rate equations in terms of linear functions of the logarithms of the concentrations. Biochemical Systems Analysis approximates in terms of power laws. Importantly all these approaches link system behavior to molecular interaction properties. The latter two do this less precisely but enable analytical solutions. By limiting the questions asked, to optimal flux patterns, or to control of fluxes and concentrations around the (patho)physiological state, Flux Balance Analysis and Metabolic/Hierarchical Control Analysis again enable analytical solutions. Both the silicon cell approach and Metabolic/Hierarchical Control Analysis are able to highlight where and how system function derives from molecular interactions. The latter approach has also discovered a set of fundamental principles underlying the control of biological systems. The new law that relates concentration control to control by time is illustrated for an important signal transduction pathway, i.e. nuclear hormone receptor signaling such as relevant to bone formation. It is envisaged that there is much more Mathematical Biology to be discovered in the area between molecules and Life.  相似文献   

16.
Because of its importance to cell function, the free-energy metabolism of the living cell is subtly and homeostatically controlled. Metabolic control analysis enables a quantitative determination of what controls the relevant fluxes. However, the original metabolic control analysis was developed for idealized metabolic systems, which were assumed to lack enzyme-enzyme association and direct metabolite transfer between enzymes (channelling). We here review the recently developed molecular control analysis, which makes it possible to study non-ideal (channelled, organized) systems quantitatively in terms of what controls the fluxes, concentrations, and transit times. We show that in real, non-ideal pathways, the central control laws, such as the summation theorem for flux control, are richer than in ideal systems: the sum of the control of the enzymes participating in a non-ideal pathway may well exceed one (the number expected in the ideal pathways), but may also drop to values below one. Precise expressions indicate how total control is determined by non-ideal phenomena such as ternary complex formation (two enzymes, one metabolite), and enzyme sequestration. The bacterial phosphotransferase system (PTS), which catalyses the uptake and concomitant phosphorylation of glucose (and also regulates catabolite repression) is analyzed as an experimental example of a non-ideal pathway. Here, the phosphoryl group is channelled between enzymes, which could increase the sum of the enzyme control coefficients to two, whereas the formation of ternary complexes could decrease the sum of the enzyme control coefficients to below one. Experimental studies have recently confirmed this identification, as well as theoretically predicted values for the total control. Macromolecular crowding was shown to be a major candidate for the factor that modulates the non-ideal behaviour of the PTS pathway and the sum of the enzyme control coefficients.  相似文献   

17.
18.
Control, regulation and thermodynamics of free-energy transduction   总被引:1,自引:0,他引:1  
H V Westerhoff 《Biochimie》1989,71(8):877-886
The quantitative formalism called Metabolic Control Theory makes it possible to be precise in discussions of metabolic control. To illustrate this, I will mention 2 experimental systems where free energy is converted from one form to another, i.e., bacteriorhodopsin liposomes and mitochondrial oxidative phosphorylation. More specifically I shall discuss how the distribution of the control of fluxes, concentrations and potentials, among the various enzymes (catalysts) in these systems has been measured and how this distribution can be understood in terms of the enzyme properties. From the outset, Metabolic Control Theory was valid for branched metabolic pathways with non-linear kinetics. Yet, it seemed to be limited to metabolic pathways without enzyme-enzyme interactions and to steady states. It is now clear that these limitations were apparent only and recent extensions to Metabolic Control Theory deal explicitly with enzyme-enzyme interaction and with transient-time analysis. Other limitations are inherent. For instance, Metabolic Control Theory pays for its clarity and exactness by being limited to small modulations. Mosaic Non Equilibrium Thermodynamics and Biochemical System Analysis are formalisms that deal with larger changes, at the cost of accuracy and exactness.  相似文献   

19.
Basic quantitative parameters of control in a metabolic system are considered: control coefficients of enzymes with respect to metabolic fluxes and concentrations, and in the case when there are conservation laws, the response coefficients of metabolic fluxes and concentrations to changes in the conserved sums of metabolite concentrations (e. g. conserved moieties). Relationships are obtained which generalize the well known connectivity relations for the case of metabolites binding by conservation laws. Additional relationships are obtained which complement the set of connectivity relations up to the complete system of equations for determining all the control coefficients. The control coefficients are expressed through the enzyme elasticity coefficients, steady state metabolic fluxes and concentrations. Formulas are derived which express response coefficients of flux and concentrations through the enzyme control and elasticity coefficients and metabolite concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号