首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The degradation of hyaluronic acid induced by ascorbic acid and the effect of synovial fluid proteins, such as ceruloplasmin, transferrin, and albumin, were investigated on the basis of the elution volume and the molecular weight of hyaluronic acid using high-performance gel permeation chromatography. Hyaluronic acid was degraded to less than one-third of the original molecular weight in the range of the physiological concentrations of ascorbic acid. Synovial fluid proteins protected against the ascorbate-dependent degradation of hyaluronic acid at their physiological concentrations. It is suggested that the inhibitory activity of ceruloplasmin mainly depends on the ferroxidase activity and that of transferrin is probably due to iron binding property.  相似文献   

5.
6.
7.
Mural and cumulus granulosa cells synthesize hyaluronic acid (HA) and expand in vitro in response to follicle-stimulating hormone and a soluble factor(s) produced by fully grown oocytes. In the present study we examined HA synthesis and extracellular matrix organization by the two cell populations in vivo during the preovulatory period. After injection of human chorionic gonadotropin into pregnant mares' serum gonadotropin-primed animals, a progressive increase in HA synthesis was observed by the cumulus cell-oocyte complex (COC), and by the mural granulosa cells adjacent to the antrum (antral granulosa cells). The outermost layers of mural granulosa cells (peripheral granulosa cells) did not synthesize HA. Net HA synthesis was approximately 4 pg/cell for COCs isolated after full expansion induced either in vivo or in vitro, whereas the total HA content and cell number in the ovulated COC (approximately 11 ng HA and approximately 3000 cells per COC) were about threefold higher than for COCs expanded in vitro (approximately 4 ng HA and approximately 1000 cells per COC). The increased cell content of ovulated COCs appears to be primarily the result of inclusion of proximal mural granulosa cells which synthesize HA in response to the oocyte factor(s) and become incorporated in the expanded COC extracellular matrix mass. Media conditioned by oocytes enclosed in the cumulus cell mass (intact COCs) contained only 10-20% of the HA-stimulatory activity of media conditioned by an equal number of isolated oocytes when tested on mural granulosa cell cultures. Further, HA-stimulatory activity of media conditioned by isolated oocytes was dramatically reduced (approximately 70%) by preincubation for 5 hr with cumulus cells compared to preincubation in the absence of cells. The results suggest that differences in HA synthesis between subregions of membrana granulosa depend on a diffusion gradient of the oocyte factor(s).  相似文献   

8.
Synovial cell lines were established from patients with rheumatoid arthritis (RA) and from normal human embryos. High levels of hyaluronic acid (HA) were produced by some RA cell lines, some of which were partially or completely resistant to infection with Newcastle disease virus (NDV), vesicular stomatitis virus (VSV), and rubella virus (RV). Normal fetal synovial cells lines were susceptible to NDV, VSV, and RV. Infection with virus became possible after treatment of RA cells with hyaluronidase to depolymerize HA, and HA prevented infection of normal synovial cells with VSV. These results provide evidence that HA and not chronic or latent viral infection is responsible for the lack of susceptibility of RA synovial cells to certain viruses.  相似文献   

9.
10.
Exogenous hyaluronic acid (HA) added to a confluent monolayer of 3T3 BALB cells facilitates cell detachment which can be enhanced by gently pipetting. When HA is added to a cell culture with the cell inoculum, the cells are able to grow and form a confluent monolayer, but the cellular density is lower than in the control cultures, in a concentration-dependent way. This difference seems due to the ease of detachment promoted by HA on the cells near confluency. In fact only near confluency is the amount of the detached cells greater in the culture plates containing HA than in controls. Culture dishes containing substrate-attached material (SAM) left behind by the confluent 3T3 BALB cells have been prepared by removing the cells with different detaching agents. The SAM-containing dishes have been incubated in the presence of HA for 24 h and, after washing, were used for cell cultures. The cells grown on such HA-treated dishes show a very low density at confluency and in some cases are prevented from forming a confluent monolayer. When the SAM-containing dishes are treated with Streptomyces hyaluronidase, the effect of HA is abolished and the cells are able to grow normally. Among the chondroitin sulphates, only chondroitin sulphate C shows the same effects as HA, whereas A and B are ineffective.  相似文献   

11.
12.
Mucification (or expansion) of the cumulus cells surrounding the oocyte is thought to depend on the direct action of gonadotropins in stimulating production and deposition of hyaluronic acid (HA) in the extracellular matrix. We now report that the oocyte is essential for this process. Either follicle-stimulating hormone (FSH) at 1 micrograms/ml or dibutyryl cAMP at 2 mM induces mucification of intact cumulus cell-oocyte complexes (COCs) in vitro, but fails to stimulate mucification of isolated cumulus cells. HA synthesis by FSH-stimulated cumulus cells is only approximately 3.5% of the value achieved by FSH-stimulated COCs. Isolated oocytes cultured with or without FSH do not synthesize detectable amounts of HA but induce isolated cumulus cells to increase HA synthesis approximately 13-fold in cocultures with FSH. Medium conditioned by isolated oocytes for 5 hr induces nearly the same level of HA synthesis by cumulus cells under the same culture conditions. FSH also stimulates cumulus cells to increase synthesis of dermatan sulfate proteoglycans (DS-PGs) approximately 3-fold, but this stimulation does not depend upon the presence of oocytes. The results indicate that oocytes produce a soluble factor(s) essential in combination with FSH to stimulate HA, but not DS-PG, synthesis by cumulus cells in vitro and that this factor(s) acts independently or downstream from the FSH-induced formation of cAMP.  相似文献   

13.
14.
Synthesis of hyaluronic acid was investigated in a cell-free system derived from a strain of Group A streptococci. Preparative procedures were improved so that an enzyme system 70 times more active than that previously reported was obtained. The hyaluronic acid synthesized could be separated into trichloroacetic acid-soluble and -insoluble fractions. On the basis of pulse-chase experiments, it was shown that the trichloroacetic acid-insoluble fraction is a precursor of the soluble fraction. The release of the trichloroacetic acid-insoluble hyaluronic acid is specifically blocked with p-chloromercuribenzoate, without inhibition of chain elongation. The addition of butanol to trichloroacetic acid resulted in solubilization of all of the hyaluronic acid. No detectable difference in molecular size was observed between the two hyaluronic acid fractions, both of which were estimated to be more than one million daltons in size. Testicular hyaluronidase digestion of either one of the two types of hyaluronic acid yielded no high molecular weight fragments, indicating that hyaluronic acid is not bound covalently to protein. However, following incubation of enzyme assay mixtures with UDP-[14C]GlcUA, even in the absence of UDP-GlcNAc, radioactive high molecular weight hyaluronic acid was obtained which suggests that the enzyme system elongates rather than initiates hyaluronic acid chains. Tunicamycin did not inhibit hyaluronic acid synthesis, indicating lack of participation of an intermediate of pyrophosphorylpolyisoprenol type. The results obtained are consistent with the hypothesis that chain elongation of hyaluronic acid proceeds by alternate addition of monosaccharides from UDP-sugars by a membrane-bound synthesizing system followed by release of completed hyaluronic acid chains.  相似文献   

15.
Binding of ovarian cancer cells to immobilized hyaluronic acid   总被引:2,自引:0,他引:2  
Ovarian cancer has the highest mortality rate of any gynaecological malignancy. This is caused by metastatic deposits obstructing the intestinal tract. Very little is known about the molecules involved in the initial attachment of the metastatic tumour cells to the peritoneal mesothelial lining. Previously, we showed that many ovarian tumour lines express the adhesion molecule, CD44, on their cell surface. The major ligand for CD44 is the extracellular matrix glycosaminoglycan, hyaluronic acid (HA). Because mesothelial cells have a pericellular cost that contains large amounts of HA, it was postulated that the CD44/HA interaction is an important stage in ovarian cancer spread. However, it was difficult to demonstrate this interaction in an in vitro adhesion assay with mesothelial cells as most of the HA, and presumably the bound tumour cells, were lost from the mesothelial cells during the washing steps of the assay. In order to try and clarify the situation, the adhesion of six ovarian tumour lines to immobilized HA was measured. Four lines expressed high levels of CD44 and two lines expressed negligible amounts. Preliminary experiments were carried out with one of the CD44-expressing lines. After coating a plate overnight with 3 mg ml−1 HA, the 5 min adhesion of this line varied between 2% and 73% according to the type of plate that was used. Falcon Micro Test III flexible plates gave the highest adhesion and was used for further experiments. Plates were coated with concentrations of HA between 0.001 mg ml−1 and 3 mg ml−1. All CD44 expressing lines adhered to HA, but the maximum adhesion and the adhesion strength varied with the line studied and was not closely related to the total CD44 expression. These results suggest that CD44 on ovarian tumour cells binds to HA on mesothelial cells. As much of the HA can be very easily lost from the mesothelial cell surface, additional factors such as the strength of the CD44/HA interaction, and the formation of bonds by the tumour cells with other membrane adhesion molecules, such as integrins, are also important in promoting tumour spread. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Ovarian cancer has the highest mortality rate of any gynaecological malignancy. This is caused by metastatic deposits obstructing the intestinal tract. Very little is known about the molecules involved in the initial attachment of the metastatic tumour cells to the peritoneal mesothelial lining. Previously, we showed that many ovarian tumour lines express the adhesion molecule, CD44, on their cell surface. The major ligand for CD44 is the extracellular matrix glycosaminoglycan, hyaluronic acid (HA). Because mesothelial cells have a pericellular cost that contains large amounts of HA, it was postulated that the CD44/HA interaction is an important stage in ovarian cancer spread. However, it was difficult to demonstrate this interaction in an in vitro adhesion assay with mesothelial cells as most of the HA, and presumably the bound tumour cells, were lost from the mesothelial cells during the washing steps of the assay. In order to try and clarify the situation, the adhesion of six ovarian tumour lines to immobilized HA was measured. Four lines expressed high levels of CD44 and two lines expressed negligible amounts. Preliminary experiments were carried out with one of the CD44-expressing lines. After coating a plate overnight with 3 mg ml-1 HA, the 5 min adhesion of this line varied between 2% and 73% according to the type of plate that was used. Falcon Micro Test III flexible plates gave the highest adhesion and was used for further experiments. Plates were coated with concentrations of HA between 0.001 mg ml−1 and 3 mg ml−1. All CD44 expressing lines adhered to HA, but the maximum adhesion and the adhesion strength varied with the line studied and was not closely related to the total CD44 expression. These results suggest that CD44 on ovarian tumour cells binds to HA on mesothelial cells. As much of the HA can be very easily lost from the mesothelial cell surface, additional factors such as the strength of the CD44/HA interaction, and the formation of bonds by the tumour cells with other membrane adhesion molecules, such as integrins, are also important in promoting tumour spread. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Interaction of camel lens zeta-crystallin with the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) enhanced the ANS fluorescence and quenched the protein fluorescence. Both of these events were concentration-dependent and showed typical saturation curves suggesting specific ANS-zeta-crystallin binding. Quantitative analysis indicated that 1 mole zeta-crystallin bound at most 1 mole ANS. NADPH but not 9,10-phenanthrenequinone (PQ) was able to displace zeta-crystallin-bound ANS. These results suggested the presence of a hydrophobic domain in zeta-crystallin, possibly at the NADPH binding site. alpha-Crystallin as well as NADPH protected zeta-crystallin against thermal inactivation suggesting the importance of this site for enzyme stability. The NADPH:quinone oxidoreductase activity of zeta-crystallin was inhibited by ANS with NADPH as electron donor and PQ as electron acceptor. Lineweaver-Burk plots indicated mixed-type inhibition with respect to NADPH, with a K(i) of 2.3 microM. Secondary plots of inhibition with respect to NADPH indicated a dissociation constant (K'I) of 12 microM for the zeta-crystallin-NADPH-ANS complex. The K(i) being smaller than K'I suggested that competitive inhibition at the NADPH binding site was predominant over non-competitive inhibition. Like ANS-zeta-crystallin binding, inhibition was dependent on ANS concentration but independent of incubation time.  相似文献   

19.
Bovine aortic endothelial cells take up 12-hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product formed from arachidonic acid. The uptake of [3H]12-HETE reached a maximum in 2 to 4 h. At this time, from 75 to 80% of the incorporated radioactivity was contained in phospholipids, about 85% of the esterified radioactivity remained in the form of 12-HETE, and at least 90% of the phospholipid radioactivity was present in the sn-2-position. Subcellular fractionation on Percoll and sucrose gradients demonstrated that 65 to 74% of the radioactivity was present in membranes enriched in NADPH-cytochrome c reductase and UDP-galactosyl transferase. The specific radioactivity relative to protein of these intracellular membranes was 2.9-times higher than in a plasma membrane fraction enriched in 5'-nucleotidase. A similar intracellular localization was observed when [3H]5-HETE or [3H]arachidonic acid were taken up. The 12-HETE was contained primarily in the choline glycerophospholipids of the microsomal membranes. After incorporation, [3H]12-HETE was removed from the cell lipids much more rapidly than [3H]arachidonic acid, and 80% of the radioactivity released into the medium during the first hour remained as 12-HETE. Because it accumulates in microsomal membranes, 12-HETE uptake may perturb certain intracellular processes and thereby lead to endothelial dysfunction. The relatively rapid removal of the newly incorporated 12-HETE may be an important protective mechanism that prevents excessive accumulation and more extensive endothelial damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号