首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Phenylalanyl-tRNA synthetase has been reacted with N-bromoacetyl-[14C]Phe-tRNAPhe to yield covalently linked enzyme-N-acetyl-[14C]Phe-tRNAPhe. The labelled enzyme was dissociated in the presence of 4M guanidinium chloride and the subunits subsequently separated by gel chromatography. The elution pattern is indicative of covalent binding of the tRNA to the β-subunit of the enzyme.  相似文献   

2.
A detailed time study of the incorporation of label from sodium-[1-14C]acetate, [1-14C]ethanol, and [2-14C]glucose into the aspartyl moiety of N-acetylaspartic acid (NAA) was conducted. As expected the specific activity of aspartate increased rapidly with time and peaked within 15-20 min after which it fell sharply; but significantly, that of the aspartyl moiety of NAA rose very slowly even after the specific activity of aspartate had fallen to less than 1 per cent of the peak values. A rat brain microsomal free supernatant preparation was shown enzymatically to incorporate label from sodium-[1-14C]acetate into the t-RNA fraction from which was isolated N-[1-14C]acetylaspartic acid. From these observations we were inclined to speculate that NAA-t-RNA may serve as an initiator of neuronal protein synthesis.  相似文献   

3.
—Isolated rat posterior pituitary glands were incubated with [14C]glucose or [14C]acetate and the incorporation of radioactivity into several amino acids was followed. The results indicated that radioactivity was incorporated from [14C]glucose into a large pool of glutamate which appeared to be responsible for a large proportion of GABA synthesis in the gland. The specific activity of glutamine was always less than that of glutamate when [14C]glucose was the precursor employed, whereas [14C]acetate labelled a glutamate pool which had approximately the same specific activity as that of glutamine. The results are discussed with reference to the compartmentation of amino acid metabolism in the nervous system.  相似文献   

4.
Two complementary methods have been devised for measuring the activity of 5-amino-4-imidazole-N-succinocarboxamide ribonucleotide synthetase (SAICAR synthetase, EC 6.3.2.6), a critical enzyme in the pathway of purine biosynthesis. In the first method, l-[4.14C]aspartic acid is condensed with 5-amino-4-imidazolecarboxylic acid ribonucleotide (AICOR) via the action of SAICAR synthetase. Unreacted l-[4-14C]aspartic acid is measured by scintillation spectrometry. In the second method, the reverse reaction of SAICAR synthetase is measured; radiactive 5-amino-4-imidazole-N-succinocarboxamide ribonucleotide (SAICAR) is synthetized enzymatically, using a partial purified preparation of SAICAR synthetase from chicken liver. To the purified [14C]SAICAR is added: sodium arsenate, Tris-HCl buffer containing ADPMgCl2 or buffer alone, and to initiate the reaction, a 12 000 × g supernatant or other suitable source of enzyme. As a consequence of the arsenolytic cleavage of [14C]SAICAR, l-[4-14C]aspartic acid is generated in stoichiometric amounts. The fourth carbon of this amino acid is then detached by selective enzymatic decarboxylation, trapped in 40% KOH and quantitated by scintillation spectrometry. The assays, performed as prescribed, are facile and notably sensitive; using them, the specific activity of SAICAR synthetase has been measured in acetone powders of the livers of representative members of the Vertebrata, and also in the principal viscera of the mouse. Of the livers examined, pigeon liver was the richest source of the investigated enzyme.  相似文献   

5.
Radioactive maltose with label in the reducing glucose moiety was prepared using a glucosyltransferase enzyme to catalyze exchange of [6-3H]glucose into unlabeled maltose. The enzyme was isolated from spinach by ammonium sulfate precipitation followed by DEAE column chromatography. A 77% yield of [6-3H]maltose was obtained after a reaction of 100 nmol of maltose with 0.0147 nmol of [6-3H]glucose was catalyzed by the most active column peak. The product was exclusively labeled in the reducing glucose moiety as indicated by the label occurring only in sorbitol following sodium borohydride reduction and sulfuric acid hydrolysis. Between 88.3 and 96.0% of the tritium in the synthesized preparation was present as [6-3H]maltose by Dowex 1-X4 chromatography. This column separates [6-3H]maltose-[U-14C]maltose mixtures and [6-3H]glucose-[U-14C]glucose mixtures apparently as a result of an isotope effect.  相似文献   

6.
Isolation and properties of naphthoate synthetase from Mycobacterium phlei   总被引:2,自引:0,他引:2  
Cell-free extracts obtained by sonication of Mycobacterium phlei cells contain an important enzyme of the menaquinone (= vitamin K2) biosynthetic pathway. This enzyme, naphthoate synthetase (1,4-dihydroxy-2-naphthoate synthetase), was partially purified by chromatography on Sepharose 6BCL. Conversion of o-succinylbenzoate to 1,4-dihydroxy-2-naphthoate was followed by a radioactivity assay using o-[2,3-14C2]succinylbenzoate, or by a spectrophotofluorometric assay. o-[1-13C]Succinylbenzoate was converted intact by the extracts to dihydroxynaphthoate containing 13C only in the carboxyl carbon atom. For maximum activity, the enzyme requires ATP, Mg2+, and coenzyme A. The pH optimum is 6.9 and the molecular weight approximately 44,000. In the presence of farnesyl pyrophosphate, the extracts convert o-[2,3-14C2]succinylbenzoate to 14C-containing menaquinone.  相似文献   

7.
The addition of [5-14C]glutamate and [14C]formate to a non-proprietary medium containing [14C]glucose, Trypticase, yeast extract, thiotone, and salts enabled the radiometric detection of the presence of nonfermenters of glucose. It did not interfere with the rapid detection of the presence of aerobic and anaerobic sporeforemers and nonsporeformers.  相似文献   

8.
L-Phenylalanyl-tRNA synthetase from E. coli MRE-600 (EC 6.1.1.20) was alkylated with N-chlorambucilyl-[14C] phenylalanyl-tRNA. After removal of the affinity reagent tRNA moiety bp alkaline hydrolysis of the ester bond between the N-chlorambucilyl-phenylalanyl residue and the 3'-end of tRNA, The enzyme was dissociated into subunits in the presence of SDS. Separation of the subunits was performed by SDS electrophoresis. The bulk of the radioactivity of the N-chlorambucilyl-[14C] phenylalanyl residue was found at the position of the alpha-subunit of the enzyme. The results obtained are consistent with a specific binding of the phenylalanyl-tRNA analog to the alpha-subunit of the enzyme followed by covalent binding of the N-chlorambucilyl-phenylalanyl moiety to the protein.  相似文献   

9.
—[14C]-Glutamate and [14C]-glutamine were incorporated into calf brain tRNA in the presence of homologous aminoacyl-tRNA synthetases. When the tRNAs were then deaminoacylated and chromatographed, a number of radioactive products were found in addition to the original amino acids. One of the products of glutamate transformation was identified to be glutamine. Formation of the radioactive products of glutamate in the presence and absence of tRNA indicated that glutamine was produced from glutamate at the level of the free amino acid followed by the incorporation of both substances into tRNA. Examination of the products of deaminoacylation of glutaminyl-tRNA showed that glutamine underwent structural alterations at the level of the aminoacyl-tRNAs to give rise to a cyclic derivative of glutarimide. This reaction was specific for glutamine, and constituted approximately 15 per cent of the total radioactivity in the deaminoacylation products of glutaminyl-tRNA.  相似文献   

10.
tRNA containing N6-(Δ2-isopentenyl)adenosine may be precursors for the plant hormone cytokinin. To discriminate between tRNA containing and not containing cytokinin nucleotides, double labelling experiments were made by the use of [214C]-mevalonic acid and [3H-methyl]-methionine. At a generation cycle of 2 h for Lactobacillus acidophilus ATCC 4963, the half-lives of tRNA labelled with [3H-methyl]-methionine and [2-14C]-mevalonic acid are similar, namely 3 h. Isopentenylation of tRNA could be measured to be maximally 1:10.  相似文献   

11.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

12.
The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C. 6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme,however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 × x 10−3 M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA - enzyme interaction.  相似文献   

13.
The cDNA for human cytosolic asparaginyl-tRNA synthetase (hsAsnRSc) has been cloned and sequenced. The 1874 bp cDNA contains an open reading frame encoding 548 amino acids with a predicted M r of 62 938. The protein sequence has 58 and 53% identity with the homologous enzymes from Brugia malayi and Saccharomyces cerevisiae respectively. The human enzyme was expressed in Escherichia coli as a fusion protein with an N-terminal 4 kDa calmodulin-binding peptide. A bacterial extract containing the fusion protein catalyzed the aminoacylation reaction of S.cerevisiae tRNA with [14C]asparagine at a 20-fold efficiency level above the control value confirming that this cDNA encodes a human AsnRS. The affinity chromatography purified fusion protein efficiently aminoacylated unfractionated calf liver and yeast tRNA but not E.coli tRNA, suggesting that the recombinant protein is the cytosolic AsnRS. Several human anti-synthetase sera were tested for their ability to neutralize hsAsnRSc activity. A human autoimmune serum (anti-KS) neutralized hsAsnRSc activity and this reaction was confirmed by western blot analysis. The human asparaginyl-tRNA synthetase appears to be like the alanyl- and histidyl-tRNA synthetases another example of a human Class II aminoacyl-tRNA synthetase involved in autoimmune reactions.  相似文献   

14.
UsingS-adenosyl-L-[Me-14C] methionine, rat cerebral cortex methyltransferase activity was determined during the early postnatal period in the absence of addedEscherichia coli tRNA and in its presence. [Me-14C] tRNA was purified from both systems and its [Me-14C] base composition determined. The endogenous formation of [Me-14C] tRNA (homologous tRNA methylation) was totally abolished in the presence of 2.5 mM spermidine, whereasE. coli B tRNA methylation (heterologous methylation) was markedly stimulated. Only [Me-14C] 1-methyl guanine and [Me-14C]N 2-methyl guanine were formed by homologous methylation, there being an inverse shift in their relative proportions with age. Heterologous tRNA methylation led, additionally, to the formation of [Me-14C]N 2 2 -dimethyl guanine, 5-methyl cytosine, 1-methyl adenine, 5-methyl uracil, 2-methyl adenine, and 1-methyl hypoxanthine. A comparison of heterologous tRNA methylation between the whole brain cortex (containing nerve and glial cells) and bulk-isolated nerve cell bodies revealed markedly lower proportions of [Me-14C]N 2-methyl andN 2 2 -dimethyl guanine and significantly higher proportions of [Me-14C] 1-methyl adenine in the neurons. The present findings suggest (1) that homologous tRNA methylation may provide developing brain cells with continuously changing populations of tRNA and (2) that neurons are enriched in adenine residue-specific tRNA methyltransferases that are highly sensitive to spermidine.This research was supported by grant NS-06294 of the United States Public Health Service.  相似文献   

15.
Protoplasts isolated from cultured soybean cells (Glycine max (L.) Merr., cv. Mandarin) were used to study polysaccharide biosynthesis during the initial stages of cell wall-regeneration. Within minutes after the protoplasts were transferred to a wall-regeneration medium containing [14C]glucose, radioactivity was detected in a product which was chemically characterized as cellulose. The onset and accumulation of radioactivity into cellulose coincided with the appearance fibrils on the surface of protoplasts, as seen under the electron microscope. At these early stages, a variety of polysaccharide-containing polymers other than cellulose were also synthesized. Under conditions where the protoplasts were competent to synthesize cellulose from glucose, uridine diphosphate-[14C]glucose and guanosine diphosphate-[14C]glucose did not serve as effective substrates for cellulose synthesis. However, substantial amounts of label from uridine diphosphate glucose were incorporated into 1,3-glucan.Abbreviations ECM extracellular material - GLC gas liquid chromatography - GDP-glucose guanosine diphosphate glucose - UDP-glucose uridine diphosphate glucose - U enzyme units as defined by Sigma Chemical Corp., St. Louis, Mo., USA  相似文献   

16.
Infection of chicken embryos with West Nile (WN) virus, a group B togavirus containing structural lipids, caused a rapidly developing hypertriglyceridemia. Changes in the activity of several hepatic regulatory enzymes in glycolytic and lipogenic pathways occurred during infection. Compared to control values in embryos of the same age (16 days), an 8.8-fold increase in the specific activity of ATP-citrate lyase and a 5.6-fold increase in that of hexokinase were observed on the third day of WN virus infection. Hexose monophosphate shunt dehydrogenase specific activities were elevated twofold in virus-infected livers. Activities of malic enzyme and phosphofructokinase were also elevated in WN virus-infected livers. Malate dehydrogenase and NADP-linked isocitrate dehydrogenase levels showed little or no change during infection. The levels of pyruvate kinase and lactate dehydrogenase were decreased in virus-infected livers. Hepatic acetyl-CoA carboxylase activity was at least twofold higher in virus-infected embryos; however, following removal of low-molecular-weight compounds, the specific activities of this enzyme from infected and control embryos were virtually identical. The results of mixing experiments suggest that the low levels of carboxylase activity in control embryos may be due to the presence of enzyme inhibitor(s) which can be removed by gel filtration.The incorporation of radiolabeled precursors into cellular lipids by liver minces from virus-infected and uninfected embryos was measured. There was a twofold increase in carbohydrate incorporation in virus-infected liver as compared to uninfected liver; [14C]pyruvic acid was incorporated into lipids to the greatest extent. [1-14C]acetic acid, [U-14C]alanine, and [U-14C]leucine were incorporated very poorly in both infected and control livers. Twice as much [1-14C]oleic acid or [1-14C oleic]triolein was incorporated in WN-infected livers as in control. The relative distribution of neutral and polar lipids formed from each precursor was generally similar in infected and uninfected livers as determined by thin-layer chromatography of radiolabeled lipids. Except for a threefold increase in oxidation of [14C]glucose by virus-infected livers, the oxidations of carbohydrates and fatty acids were similar in infected and uninfected livers. The pentose phosphate pathway appears to be the major pathway utilized in glucose oxidation for both control and virus-infected livers. The results indicate that enhanced flux of metabolites into lipids reflects a virus-induced alteration in embryonic development: The enzyme patterns of infected embryos are more characteristic of older embryos or even newly hatched chicks.  相似文献   

17.
This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.  相似文献   

18.
Apo- and holo-fatty acid synthetases of pigeon liver were separated by affinity gel chromatography under conditions similar to, but not identical to, those used in separating subunits I and II of [14C]pantetheine-labeled fatty acid synthetase complex [Lornitzo et al., J. Biol. Chem. 249, 1654 (1974)]. When [14C]pantetheine-labeled fatty acid synthetases were separated, the enzymatically active holo form contained all of the [14C] label. Incubation of the apo-pigeon liver fatty acid synthetase complex with CoA, ATP and a partially purified pigeon liver soluble enzyme system, from which fatty acid synthetase had been removed, resulted in the formation of holo-enzyme. Activation of apo-fatty acid synthetase could also be achieved by replacing the apo-(4′-phosphopantetheine-less) acyl carrier protein with holo-acyl carrier protein. It is evident, therefore, that the inactive apo-fatty acid synthetase lacks a 4′-phosphopantetheine group.  相似文献   

19.
Summary Newborn BALB/c mouse brain was cultured as disaggregated cells after serial trypsin dissociations. The ontogeny of the cultures was followed by assays of cell number, deoxyribonucleic acid, and protein content and by the activities of three enzymes considered to be markers of neuronal differentiation. Aliquots of the freshly dissociated cells were assayed for choline acetylase, acetylcholinesterase, and glutamic acid decarboxylase activities and compared with intact brain. The percentages of recovery of activities, expressed as14C product formed per mg of protein per 10 min, at pH 6.8 and 37°C, were 37% for choline acetylase, 54% for acetylcholinesterase, and 24% for glutamic acid decarboxylase. The remainder of the freshly dissociated cells were placed into culture; enzyme assays were performed as the cells multiplied and then when the cultures became static. Choline acetylase activity increased as the cells rapidly divided, and glutamic acid decarboxylase activity increased only after the cultures became confluent. Under the culture conditions, acetylcholinesterase was not induced, despite active synthesis of acetylcholine. Neuroblastoma clone N18, C1300 cell line, was grown in cell culture, and the activity of acetylcholinesterase was measured as the cells multiplied and came to confluency. The specific activity of mouse neuroblastoma acetylcholinesterase increased 25-fold when the rate of cell division was restricted. The rate of cell division could be regulated by adjusting the serum concentration. By removing fetal calf serum during the growth period, cell division ceased, and acetylcholinesterase activity was significantly and rapidly induced. Choline-O-acetyltransferase specific activity was measured in rapidly dividing and in static cultures. Its specific activity was highest in nondividing cultures, compared to cultures containing actively dividing cells (6-fold), and the specific activity of thymidylate synthetase was increased 2.5-fold in actively dividing cultures, compared to static cultures. Glioblastoma cells obtained from the rat astrocytoma, clone C6, were grown in culture, and glucose metabolism was measured in control cultures, and in cultures containing norepinephrine (0.017 mg per ml). Norepinephrine produced a 50% inhibition in the incorporation ofd-[14C]glucose. Cells incubated for 2 hr in the presence ofd-[14C]glucose, washed and then incubated in control medium or in medium containing norepinephrine, resulted in the release of greater than 50% of radioactive metabolites in the norepinephrine treated plates. Norepinephrine caused a 50% increase in14CO2 production in glioblastoma cells incubated withd-[1-14C]glucose. Norepinephrine, under similar conditions, did not affect the metabolism of glucose in clone C46, C1300 mouse neuroblastoma cells. Portions of this work were supported by a research grant (6-444946-58605) from the American Cancer Society.  相似文献   

20.
Uptake and efflux of 6-deoxy-d-[3H]glucose and of 2-deoxy-d-[14C]glucose by the yeast Kluyveromyces lactis was studied. The tritiated, nonphosphorylatable hexose analogue leaves the cell in the absence and presence of intracellular 2-deoxy-d-glucose 6-phosphate. In energy-rich cells containing pools of hexose 6-phosphate, 2-deoxy-d-glucose is trapped in the cells, for it neither effluxes into glucose-free medium nor exchanges with external, free sugar. In starved, poisoned cells containing negligible amounts of 2-deoxy-d-glucose 6-phosphate, 2-deoxy-d-glucose does leave the cells upon transfer to glucose-free medium. An involvement of analogue structure and availability of metabolites of energy-rich cells in hexose retention is suggested. An internal pool of 6-deoxy-d-glucose does not affect the rate of uptake of 6-deoxy-d-[3H]glucose, nor does internal 2-deoxy-d-[14C]glucose 6-phosphate influence that rate. Hence, transport of glucose by this yeast is probably not regulated by internal pools of glucose 6-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号