首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Adenylate and guanylate cyclase activities were confirmed in crude homogenates from rat peritoneal mast cells. Both enzyme activities were associated with the 105, 000 X g particulate fractions, but not detected in the supernatant fractions. The optimal pH for both cyclase activities was 8.2. Mn++ was essentially required for guanylate cylcase activity, while adenylate cyclase activity was observed in the presence of either Mg++ or Mn++. The apparent Km values of adenylate cyclase for Mn++-ATP and Mg++-ATP were 160 μM and 340 μM, respectively, whereas the value of guanylate cyclase for Mn++-GTP was 100 μM. Adenylate cyclase was activated by 10 mM NaF. However, both adenylate and guanylate cyclase activities were neither stimulated nor inhibited by the addition of various kinds of agents which stimulate or inhibit the release of histamine from mast cells.  相似文献   

2.
Smooth muscle adenylate cyclase of a membrane preparation of canine gastric antrum has been characterized, and the effect of hormonal and neuronal agents examined. The enzyme is active in the presence of Mg2+ or Mn2+, but is inhibited by Ca2+. The Km is 0.5 mM ATP, similar to the Km of skeletal muscle adenylate cyclase. The enzyme is activated by isoproterenol but not norepinephrine, consistent with a β2-catecholamine receptor-adenylate cyclase interaction. Secretin activates the enzyme in concentrations as low as 1 · 10?11 M, while glucagon was effective only at 1 · 10?6 M. Prostaglandin E1 and E2 have a biphasic effect with activation of adenylate cyclase at 1 · 10?5 M and a small but significant inhibition of enzyme activity at 1 · 10?11 M.  相似文献   

3.
Melittin, a surface-active, 26-amino acid polypeptide from bee venom, has been reported to alter a variety of membrane properties including stability, permeability, and fluidity, the latter having been shown to be altered in a biphasic manner. Melittin induced a biphasic alteration of rat heart microsomal adenylate cyclase activity, stimulating it at low concentration (<30 μg/ml) and inhibiting it at higher concentrations (100 μg/ml or higher). Melittin potentiated sodium fluoride and 5′-guanylylimidodiphosphate activation of adenylate cyclase below 40 μg/ml but it inhibited at high concentrations, except in the presence of high concentrations of 5′-guanylylimidodiphosphate (10?4m). Basal and fluoride-activated adenylate cyclase exhibited no significant change in the Km for ATP in the presence of melittin at <40 μg/ml, but the V was elevated. Potentiation by melittin of adenylate cyclase was observed at all fluoride, 5′-guanylylimidodiphosphate, and magnesium concentrations tested. The observed effects of melittin on rat heart adenylate cyclase are consistent with it acting by altering the properties of membrane lipids with which the enzyme is associated.  相似文献   

4.
Particulate adenylate cyclase (AC) and guanylate cyclase (GC) activities localized in the ciliary membrane from Paramecium were solubilized by a two-step procedure using the detergents Brij 56 and Lubrol PX. The enzymes remained in the supernatant after a 100 000 × g centrifugation. Upon gel chromatography, AC and GC were almost completely separated proving that each enzyme is a distinct molecular entity. Solubilization of GC was achieved with the calmodulin subunit remaining firmly attached to the catalytic part. Antibodies against calmodulin inhibited the enzyme as did La3+ and EGTA. AC activity appeared to be regulated specifically by K+, enzyme activity being enhanced up to 100% by 15 mM K+. Na+ and Li+ were inactive.  相似文献   

5.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

6.
Bovine lung soluble guanylate cyclase was purified to apparent homogeneity in a form that was deficient in heme. Heme-deficient guanylate cyclase was rapidly and easily reconstituted with heme by reacting enzyme with hematin in the presence of excess dithiothreitol, followed by removal of unbound heme by gel filtration. Bound heme was verified spectrally and NO shifted the absorbance maximum in a manner characteristic of other hemoproteins. Heme-deficient and heme-reconstituted guanylate cyclase were compared with enzyme that had completely retained heme during purification. NO and S-nitroso-N-acetylpenicillamine only marginally activated heme-deficient guanylate cyclase but markedly activated both heme-reconstituted and heme-containg forms of the enzyme. Restoration of marked activation of heme-deficient guanylate cyclase was accomplished by including 1 μM hematin in enzyme reaction mixtures containing dithiothreitol. Preformed NO-heme activated all forms of guanylate cyclase in the absence of additional heme. Guanylate cyclase activation was observed in the presence of either MgGTP or MnGTP, although the magnitude of enzyme activation was consistently greater with MgGTP. The apparent Km for GTP in the presence of excess Mn2+ or Mg2+ was 10 μM and 85–120 μM, respectively, for unactivated guanylate cyclase. The apparent Km for GTP in the presence of Mn2+ was not altered but the Km in the presence of Mg2+ was lowered to 58 μM with activated enzyme. Maximal velocities were increased by enzyme activators in the presence of either Mg2+ or Mn2+. The data reported in this study indicate that purified guanylate cyclase binds heme and the latter is required for enzyme activation by NO nitroso compounds.  相似文献   

7.
Purified hepatic soluble guanylate cyclase (EC 4.6.1.2) had maximal specific activities in the unactivated state of 0.4 and 1 μmol cyclic GMP min?1 mg protein?1, when MgGTP and MnGTP, respectively, were used as substrates. The apparent Km for GTP was 85 or 10 μm in the presence of excess Mg2+ or Mn2+, respectively. Guanylate cyclase purified as described was deficient in heme but could be readily reconstituted with heme by reacting enzyme with hematin and excess dithiothreitol at 4 °C and pH 7.8. Unpurified guanylate cyclase was activated 20- to 84-fold by NO, nitroso compounds, NO-heme, and protoporphyrin IX. The purified enzyme was only slightly (2- to 3-fold) activated by NO and nitroso compounds but was markedly (50-fold) activated by NO-heme and protoporphyrin IX, achieving maximal specific activities of 10 μmol cyclic GMP min?1 mg protein?1. Enzyme activation by NO and nitroso compounds was restored by addition of hematin or by reconstitution of guanylate cyclase with heme. Excess hematin, however, inhibited enzyme activity. A partially purified heat-stable factor (activation-enhancing factor) was found to enhance (2- to 35-fold) enzyme activation without directly stimulating guanylate cyclase. In the presence of optimal concentrations of hematin, enzyme activation was still increased (2-fold) by the activation-enhancing factor but not by bovine serum albumin. Guanylate cyclase was markedly inhibited by SH reactive agents such as cystine, o-iodosobenzoic acid, periodate, and 5,5′-dithiobis (2-nitrobenzoic acid). In addition, CN? and FMN inhibited enzyme activation by NO-heme, but not by protoporphyrin IX, and did not affect basal enzymatic activity. Hepatic soluble guanylate cyclase appears to possess SH groups required for catalysis and to require heme and/or other unknown factors for the full expression of enzyme activation by NO and nitroso compounds.  相似文献   

8.
Certain biochemical characteristics of an adenylate cyclase that is activated by low concentrations of histamine (Ka, 8 μm) and that is present in cell-free preparations from the dorsal hippocampus of guinea pig brain have been studied. Histamine increased the maximal reaction velocity of adenylate cyclase without altering the Km (0.18 mm) for its substrate, MgATP. Increasing concentrations of free Mg2+ stimulated enzymatic activity; the kinetic properties of this activation by Mg2+ suggest the existence of a Mg2+ allosteric site on the enzyme. Histamine increased the affinity of this apparent site for free Mg2+. Free ATP was a competitive inhibitor with respect to the MgATP substrate. The apparent potency of free ATP as an inhibitor increased in the presence of histamine. In the presence of Mg2+, low concentrations of Ca2+ markedly inhibited adenylate cyclase activity; half-maximal inhibition of both basal and histamine-stimulated enzyme activity occurred at 40 μm Ca2+. Other divalent cations, including Zn2+, Cu2+, and Cd2+, were also inhibitory. Of the divalent cations tested, only Co2+ and Mn2+ could replace Mg2+ in supporting histamine-stimulated adenylate cyclase activity. The nucleoside triphosphates GTP and ITP increased basal adenylate cyclase activity and markedly potentiated the stimulation by histamine. Preincubation of adenylate cyclase with 5′-guanylylimidodiphosphate dramatically increased enzyme activity; in this activated state, the adenylate cyclase was relatively refractory to further stimulation by histamine or F?. The subcellular distribution of histamine-sensitive adenylate cyclase activity was studied in subfractions from guinea pig cerebral cortex. The highest total and specific activities were observed in those fractions enriched in nerve endings, while adenylate cyclase activity was not detectable in the brain cytosol fraction. A possible physiological role for this histamine-sensitive adenylate cyclase in neuronal function is discussed.  相似文献   

9.
Arg8-vasopressin inhibited the adenylate cyclase activity of human platelet particulate fraction up to a maximum of 27% (IC50 = 1.2 nM). This inhibition required the presence of 10 μM GTP and was optimal with 100 mM NaCl. Orn8-vasopressin had similar effects. 1-Deamino-Val4, D-Arg8-vasopressin did not by itself affect adenylate cyclase activity but competitively inhibited the action of Arg8-vasopressin (pA2 = 7.74). Arg8-vasopressin did not inhibit adenylate cyclase in intact platelets but instead caused platelet aggregation, an effect that was also competitively inhibited by 1-deamino-Val4, D-Arg8-vasopressin (pA2 = 7.82). Thus, platelets possess vasopressin receptors of the V1 type that, under appropriate conditions, can mediate either inhibition of platelet adenylate cyclase or platelet aggregation.  相似文献   

10.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

11.
To define sites of prostaglandin action of renal tubules, the distribution of adenylate cyclase sensitive to prostaglandin E2 (PGE2) was examined in single nephron segments dissected from rat kidney. Further, the interaction between PGE2 and vasopressin on adenylate cyclase activity in nephron segments sensitive to vasopressin was evaluated. Procedures involved in isolating nephron segments were without effects on adenylate cyclase stimulation by PGE2. PGE2 stimulated adenylate cyclase activity of the thin descending limb of Henle (tDL), cortical collecting tubules (CCT), and medullary collecting tubules (MCT) at concentrations of 1.4 × 10?5 to 2.8 × 10?5 M. PGE2 was without effects in other nephron segments tested including proximal convoluated tubules, proximal pars recta, the thin and thick ascending limb of Henle's loop, and distal and connecting tubules. PGE2, at both high (2.8 × 10?5 M) and low (2.8 × 10?8 M) concentrations, did not inhibit adenylate cyclase activity stimulated by submaximal doses of vasopressin in medullary thick ascending limb of Henle (MTAL), CCT, and MCT. These data define the distribution of PGE2-sensitive adenylate cyclase in the rat nephron, i.e., tDL, CCT, and MCT, and show the lack of direct inhibitory actions of PGE2 on vasopressin sensitive adenylate cyclase in MTAL, CCT, and MCT.  相似文献   

12.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane.  相似文献   

13.
Liver plasma membranes isolated from hypophysectomized rats were treated with 0.1 M Lubrol-PX, a nonionic detergent, and centrifuged at 165,000 × g for 1 hour. Adenylate cyclase activity remaining in the supernate had a specific activity that was at least equal to that of the particulate enzyme. The activity of the solubilized, non-sedimentable adenylate cyclase, as well as the membrane bound enzyme, was increased by GTP, ITP, and GMP-PCP at 10?4 M. The activity of the solubilized, non-sedimentable enzyme increased linearly with GTP from 10?6 to 10?4 M but there was no further increase in the activity of the solubilized enzyme with 10?3 M GTP. In contrast, the particulate liver membrane enzyme activity increased exponentially with GTP from 10?6 to 10?4 M and was further increased by 10?3 M GTP. These data indicate that GTP, ITP or GMP-PCP have direct effects on solubilized adenylate cyclase. This effect is in addition to a role of nucleotides in modifying membrane structure (16).  相似文献   

14.
Prostaglandin D2 (PGD2) is one of several prostaglandins that can inhibit platelet aggregation and activate adenylate cyclase. Platelets were exposed to varying concentrations of PGD2, washed, and the adenylate cyclase response to prostaglandins, epinephrine, and sodium fluoride determined. Incubating platelets with 5 × 10?5 M PGD2 for 2 hr resulted in a 45% decrease in PGD2 activation of adenylate cyclase and a 25% decrease in stimulation by PGE1. Fluoride activation (7-fold) epinephrine inhibition (30%) and basal enzyme activity were unchanged by exposure of the platelets to PGD2. Desensitization was concentration dependent, with loss of enzyme activity first noted when platelets were incubated with 10?7 M PGD2. Enzyme sensitivity could be partially restored when desensitized platelets were washed free of PGD2 and incubated in buffer for 2 hr; complete resensitization required incubation for 24 hr in plasma. Regulation of prostaglandin sensitive platelet adenylate cyclase could be of importance in mediating the response of platelets to aggregating agents.  相似文献   

15.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

16.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

17.
The adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1)-stimulating factor from rat osteosarcoma cytosol was purified 600-fold by ion-exchange chromatography. The factor has an apparent Mr of 20 000, is cold-labile, but retains activity at ?20°C in 10% glycerol.The factor enhanced parathyroid hormone stimulation of adenylate cyclase and restored hormone responsiveness to membranes washed with 0.5 M NaCl. These ‘GTP-like’ effects were not inhibited by 100 μM GDP-β-S, which completely abolished the GTP enhancement of both basal and hormone-stimulated adenylate cyclase.Adenylate cyclase activity in the presence of the stimulating factor was linear with time, and showed hyperbolic dependence on factor concentration. The factor also linearized (in double reciprocal plots) the downward-concave Mg2+-dependence of adenylate cyclase, increasing the apparent affinity of the enzyme for Mg2+.The presence of the factor in two clonal osteosarcoma cell lines correlated with parathyroid hormone-stimulatable adenylate cyclase. Factor stimulation was absent while GTP stimulation was retained in the hormone-nonresponsive clone. Factor and hormone sensitivity were restored by in vivo passage. This factor thus may represent a guanyl nucleotide-independent path for cellular regulation of hormone response.  相似文献   

18.
Results of cholera toxin exposure in rabbit small intestinal epithelial cells, following 4 to 6 hours of incubation, indicate that there is simultaneous dose-dependent activation of adenylate cyclase and deactivation of guanylate cyclase. In addition, cyclic GMP phosphodiesterase activity is repressed. These data indicate that cholera toxin interacts with a binding site of dissociation constant Kd=3.8±1.3 × 10?9M to produce multiple coordinated events in the cells.  相似文献   

19.
The mature rat testis contains both a soluble guanylate cyclase and a soluble adenylate cyclase. Both these soluble enzymes prefer manganous ion for activity. It is known that guanylate cyclase can, when activated by a variety of agents, catalyze the formation of cyclic AMP. The following experiments were performed to determine whether the testicular soluble adenylate and guanylate cyclase activities were carried on the same molecule. Analysis of supernatants from homogenized rat testis by gel filtration and sucrose density gradient centrifugation showed that the two activities were clearly separable. The molecular weight of guanylate cyclase is 143 000, while that of adenylate cyclase is 58 000.Treatment of the column fractions with 0.1 mM sodium nitroprusside allowed guanylate cyclase activity to be expressed with Mg2+ as well as with Mn2+. Sodium nitroprusside did not affect the metal ion or substrate specificity of adenylate cyclase.These experiments show that adenylate and guanylate cyclase activities are physically separable.  相似文献   

20.
Guanylate cyclase activity is present in both soluble and particulate fractions of homogenates of mouse cerebellum and retina. Soluble guanylate cyclases in cerebellum and retina have an apparent Km for GTP of approx 40 and 70 μM, respectively; are stimulated by Ca2+ and Mg2+ in the presence of low Mn2+; and do not respond to NaN3, NH2OH or detergent. The particulate guanylate cyclase found in brain has an apparent Km GTP of 237 7mu;M, is not stimulated by Ca2+ or Mg2+ in the presence of low Mn2+, but is stimulated by NaN3, NH2OH, and detergent. In particulate fractions of normal retina, guanylate cyclase has two apparent Km GTP values (42 and 225 μM); has higher activity at low concentrations of Mn2+ (0.5 mM) than at high concentrations (5.0 mM); is inhibited by Ca2+; and does not respond to NaN3, NH2OH, or detergent. Retinas essentially devoid of photoreceptor cells (from mice with photoreceptor dystrophy) have soluble guanylate cyclase activity which is similar to that in normal retina, but have only 4% as much particulate guanylate cyclase activity. This residual particulate guanylate cyclase has an apparent Km GTP value of 392 μM and other properties similar to particulate guanylate cyclase from brain. These data indicate the presence of three distinguishable guanylate cyclases in CNS: (1) a soluble enzyme present in both brain and retina: (2) a particulate enzyme which is also present in brain and in the inner or neural retina: and (3) another particulate enzyme which is apparently unique and confined to retinal photoreceptor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号