首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
α1-Antitrypsin is primarily synthesised in the liver, circulates to the lung and protects pulmonary tissues from proteolytic damage. The Z mutant (Glu342Lys) undergoes inactivating conformational change and polymerises. Polymers are retained within the hepatocyte endoplasmic reticulum (ER) in homozygous (PiZZ) individuals, predisposing the individuals to hepatic cirrhosis and emphysema. Latency is an analogous process of inactivating, intra-molecular conformational change and may co-occur with polymerisation. However, the relationship between latency and polymerisation remained unexplored in the absence of a suitable probe. We have developed a novel monoclonal antibody specific for latent α1-antitrypsin and used it in combination with a polymer-specific antibody, to assess the association of both conformers in vitro, in disease and during augmentation therapy. In vitro kinetics analysis showed polymerisation dominated the pathway but latency could be promoted by stabilising monomeric α1-antitrypsin. Polymers were extensively produced in hepatocytes and a cell line expressing Z α1-antitrypsin but the latent protein was not detected despite manipulation of the secretory pathway. However, α1-antitrypsin augmentation therapy contains latent α1-antitrypsin, as did the plasma of 63/274 PiZZ individuals treated with augmentation therapy but 0/264 who were not receiving this medication (p < 10−14). We conclude that latent α1-antitrypsin is a by-product of the polymerisation pathway, that the intracellular folding environment is resistant to formation of the latent conformer but that augmentation therapy introduces latent α1-antitrypsin into the circulation. A suite of monoclonal antibodies and methodologies developed in this study can characterise α1-antitrypsin folding and conformational transitions, and screen methods to improve augmentation therapy.  相似文献   

3.
Two endo-β-N-acetylglucosaminidases (CI and CI) acting on carbohydrate moieties of glycoproteins were highly purified from the culture fluid of Clostridium perfringens. CI had the substrate specificity indistinguishable from that of endo-β-N-acetylglucosaminidase D from Diplococcus pneumoniae. CII showed the specificity similar to that of endo-β-N-acetylglucosaminidase H from Streptomyces griseus but is distinct from the streptomyces enzyme with respect to the relative activity toward ovalbumin glycopeptides and Unit A glycopeptides of thyroglobulin. Both enzymes from C. perfringens were most active at neutral pH and were inhibited by p-chloromercuriphenylsulfonate.  相似文献   

4.
A simple procedure for the detection of endo-β-N-acetylglucosaminidase H activity is described. The method utilizes N-[14C]methylribonuclease B as substrate. This is prepared from ribonuclease B by reductive alkylation of free amine groups in the protein with [14C]formaldehyde. Because the carbohydrate moiety of ribonuclease B has α-mannosyl residues at nonreducing terminal positions, the radioactive molecule binds to Sepharose-concanavalin A. Endo-β-N-acetylglucosaminidase action releases this mannose-containing oligosaccharide by splitting the di-N-acetylchitobiosyl residue that links it with the peptide and thereby renders the radioactive portion of the molecule unreactive with Sepharose-concanavalin A. This forms the basis of a convenient assay for screening column fractions during the purification of the endoglycosidase. Although protease or α-mannosidase activity might also be detected by the procedure, no difficulties were presented by these enzymes when the assay was used for the preparation of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus.  相似文献   

5.
The digestive ability of four sympatric land crabs species (the gecarcinids, Gecarcoidea natalis and Discoplax celeste and the anomurans, Birgus latro and Coenobita perlatus) was examined by determining the activity of their digestive enzymes. The gecarcinids are detritivores that consume mainly leaf litter; the robber crab, B. latro, is an omnivore that preferentially consumes items high in lipid, carbohydrate and/or protein; C. perlatus is also an omnivore/detritivore. All species possess protease, lipase and amylase activity for hydrolysing ubiquitous protein, lipid and storage polysaccharides (glycogen and starch). Similarly all species possess enzymes such as N-acetyl-β-d-glucosaminidase, the cellulases, endo-β-1,4-glucanase and β-glucohydrolase and hemicellulases, lichenase and laminarinase for the respective hydrolysis of structural substrates chitin, cellulose and hemicelluloses, lichenan and laminarin. Except for the enzyme activities of C. perlatus, enzyme activity could not be correlated to dietary preference. Perhaps others factors such as olfactory and locomotor ability and metabolic status may determine the observed dietary preferences. The digestive fluid of C. perlatus possessed higher endo-β-1,4-glucanase, lichenase and laminarinase activities compared to that of the other species. Thus, C. perlatus may be efficient at digestion of cellulose and hemicellulose within plant material. Zymography indicated that the majority of protease, lipase, phosphatase, amylase, endo-β-1,4-glucanase, β-glucohydrolase and N-acetyl-β-d-glucosaminidase isozymes were common to all species, and hence were inherited from a common aquatic ancestor. Differences were observed for the phosphatase, lipase and endo-β-1,4-glucanase isozymes. These differences are discussed in relation to phylogeny and possible evolution to cope with the adoption of a terrestrial diet.  相似文献   

6.
Human liver mRNA was prepared from a patient homozygous for alpha 1-antitrypsin deficiency (PiZZ) and from a normal subject (PiMM). Both liver RNAs were microinjected into Xenopus oocytes and alpha 1-antitrypsin identified by immunoprecipitation. The normal M variant of alpha 1-antitrypsin is synthesised and secreted by Xenopus oocytes, the abnormal Z protein is not secreted and an intracellular form accumulates in the oocytes. In the presence of tunicamycin an unglycosylated form of M alpha 1-antitrypsin appears in the incubation medium but no corresponding unglycosylated version of the Z protein is secreted.  相似文献   

7.
Enzymatic synthesis of GlcNAc-terminated poly-N-acetyllactosamine β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)nGalβ1,4GlcNAcβ-pNP (n=1–4) was demonstrated using a transglycosylation reaction of Escherichia freundii endo-β-galactosidase. The enzyme catalyzed a transglycosylation reaction on GlcNAcβ1,3Galβ1,4GlcNAcβ-pNP (1), which served both as a donor and an acceptor, and converted 1 into p-nitrophenyl β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)1Galβ1,4GlcNAcβ-pNP (2), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)2Galβ1,4GlcNAcβ-pNP (3), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)3Galβ1,4GlcNAcβ-pNP (4) and GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)4Galβ1,4GlcNAcβ-pNP (5). When 2 was used as an initial substrate, it led to the preferential synthesis of nonasaccharide β-glycoside 4 to heptasaccharide β-glycoside 3. This suggests that 4 is directly synthesized by transferring the tetrasaccharide unit GlcNAcβ1,3Galβ1,4GlcNAcβ1,3Gal to nonreducing end GlcNAc residue of 2 itself. The efficiency of production of poly-N-acetyllactosamines by E. freundii endo-β-galactosidase was significantly enhanced by the addition of BSA and by a low-temperature condition. Resulting 2 and 3 were shown to be useful for studying endo-β-galactosidase-catalyzed hydrolytic and transglycosylation reactions.  相似文献   

8.
Microinjection of human liver mRNA from a patient homozygous for alpha 1-antitrypsin deficiency (PiZZ) into Xenopus oocytes led to a 2--10-fold increase in lysosomal activity. Stimulation of lysosomal activity was not observed when mRNA from a normal human liver (alpha 1-antitrypsin PiMM), or water was injected into the oocyte. This lysosomal activity was oocyte derived and was not due to translation products of the human liver mRNA. Thus a protein that accumulates intracellularly in the secretory pathway is capable of stimulating lysosomal activity.  相似文献   

9.
Subcellular distribution of plant endo-β-N-acetylglucosaminidase (endo-β-GlcNAc-ase) and high-mannose type free N-glycans produced by the endoglycosidase has been analyzed using cotyledons of pumpkin seedlings as the model plant cells. Each organelle in the cotyledons was fractionated by ultracentrifugation with the sucrose density gradient system and the endo-β-GlcNAc-ase activity in each fraction was assayed with fluorescence labeled N-glycans as substrates. The endoglycosidase activity was exclusively recovered in the soluble fraction (cytosol fraction) but not in other specific organellar fractions, suggesting that the endoglycosidase would reside predominantly in the cytosol. The quantitative analysis of high-mannose type free N-glycans occurring in each fraction showed that more than 70% of the free N-glycans was recovered from the soluble fraction, suggesting the endoglycosidase would work in the cytosol and the resulting free N-glycans would accumulate in the same fraction. The pumpkin endo-β-GlcNAc-ase (endo-CM) partially purified from the cotyledons showed optimum activity around pH 6.5, supporting this enzyme would reside in the cytosol. Furthermore, the detailed analysis of substrate specificity of endo-CM using various high-mannose type N-glycans showed that the pumpkin enzyme, as well as other plant endo-β-N-acetylglucosaminidases, were highly active toward the high-mannose type glycans bearing the Manα1-2Manα1-3Manβ1-structural unit.  相似文献   

10.
The α- and β-N-acetylglucosaminidase activity of the limpet Patella vulgata (L.) is due to two enzymes. One of these enzymes hydrolyses both α- and β-N-acetylglucosaminidases and is referred to α,β-N-acetylglucosaminidase. The other is a β-N-acetylglucosaminidase (EC 3.2.1.30). Both enzymes have been isolated and characterized as glycoproteins containing 12% hexose, mainly galactose. The amino acid, neutral sugar and amino sugar content of the two enzymes is very similar, and the main difference lies in the presence of 9% sialic acid in β-N-acetylglucosaminidase. The molecular weight of α,β-N-acetylglucosaminidase is 217 000 and that of β-N-acetylglucosaminidase is 136 000. Evidence has been obtained for the presence of an additional sub-unit in the α,β-enzyme.  相似文献   

11.
Endo-M, endo-β-N-acetylglucosaminidase from Mucor hiemalis, transferred the complex type oligosaccharide of sialoglycopeptide to partially deglycosylated proteins (N-acetylglucosamine-attached proteins), which were prepared by excluding high-mannose type oligosaccharides from glycoproteins with Endo-H, endo-β-N-acetylglucosaminidase from Streptomyces plicatus. This finding indicated that the high-mannose type oligosaccharides on glycoproteins can be changed to complex type ones by the transglycosylation activity of Endo-M. This is the first report of the establishment of a remodeling system for the different types of oligosaccharides on glycoproteins with microbial endo-β-N-acetylglucosaminidases having different substrate specificities. Endo-M is a powerful tool for the in vitro synthesis of glycoproteins containing complex type oligosaccharides from glycoproteins produced by yeast.  相似文献   

12.
Detergent extracts of Ehrlich tumor cell membranes exhibit a host of glycosyltransferase activities which have been investigated using oligosaccharides immobilized to Synsorb beads as acceptors. Glycosidase digestions in combination with methylation analysis of the insoluble products have demonstrated the presence of an α(1,3)-galactosyltransferase and a β(1,3)-N-acetylglucosaminyltransferase, enzymes that utilize N-acetyllactosamine as their acceptor substrate. The two enzymes are presumably involved in the biosynthesis of α-d-galactosyl-terminated poly-N-acetyllactosamine glycans that occur on the surface of Ehrlich cells. In addition, a β-galactosyltransferase acting on N-acetylglucosamine and a separate β-N-acetylglucosaminyltransferase that is capable of incorporating GlcNAc into the trisaccharide β-d-GlcNAc(1,3)-β-d-Gal(1,4)-β-d-Glc-Synsorb have been identified. The Ehrlich cell α- and β-galactosyltransferases have been separated by chromatography on β-GlcNAc-Synsorb beads. In the presence of MnCl2 and UDP the β-galactosyltransferase is specifically adsorbed to the monosaccharide column whereas the α-galactosyltransferase passes through unretarded.  相似文献   

13.
mRNA was prepared from autopsy liver samples from a homozygote for α1-antitrypsin deficiency (PiZZ) and from a normal (PiMM) subject. Both preparation gave equivalent synthesis of α1-antitrypsin in a wheat germ cell-free system. This suggests that the deficiency of plasma α1-antitrypsin associated with the Z variant is due to a failure of processing and secretion of the protein rather than of its synthesis. It is likely that it is the resultant intracellular accumulation of the Z protein rather than a deficiency of protease inhibitor that is the primary cause of the liver pathology associated with this variant.  相似文献   

14.
The properties of several compounds useful as models for three-dimensional conformational studies and the investigation of the chemical degradation of glycopeptide linkages both of the N- and O-glycosidic type are described. Using the method of differential chemical shift in H2O and D2O as solvents, the carbon NMR spectrum of N-acetylglucosaminylasparagine, 1-N-acetyl-β-d-glucopyranosylamine, and 1-N-acetyl-2-acetamido-β-d-glucopyranosylamine has been assigned. Electron impact mass spectra of the peracetylated derivatives of the latter two compounds show a peak apparently unique to glycopyranosylamides at me = 269, no analog of which is observed in the mass spectra of other peracetylated sugars. As models of the α-O-glycosidic linkage, fully assigned carbon NMR spectra of α-methyl-N-acetylgalactosamine (GalNAc), α-methyl-3-O-methyl GalNAc,and -GlcNAc as well as the disaccharide Glc-β-1 → 3 GalNAc are reported. Because certain anomalies in the chemical shifts and 1JCH observed in the disaccharide and in O-glycosylated glycoproteins are not observed in the simple model compounds, they may result from conformational interactions in the glycopeptides.  相似文献   

15.
An extract liberated from mycelia of the L-13 strain of Streptomyces by 0.2 M phosphate buffer, pH 6.5, contained β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase and a little α-glucosidase. On chromatofocusin, the isoelectric point of β-N-acetylglucosaminidase was around pH 8.1. The enzyme prepared thus was homogeneous, and had both β-N-acetylglucosaminidase and β-N-acetlygalactosaminidase activities. The β-N-acetylglucosaminidase was most active at pH 6.0 and stable between pH 4 to 8. The Km value for p-nitrophenyl β-N-acetylglucosaminide was 0.25 mM. N-Acetylglucosaminolactone was the most potent inhibitor tested.  相似文献   

16.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

17.
β-N-Acetylaminoglucohydrolase (β-2-acetylamino-2-deoxy-D-glucoside acetylaminodeoxyglucohydrolase, EC 3.2.1.30) was extracted from malted barley and purified. The partially purified preparation was free from α-and β-glucosidase, α- and β-galactosidase, α-mannosidase and β-mannosidase. This preparation was free from α-mannosidase only after affinity chromatography with p-amino-N-acetyl-β-D-glucosaminidine coupled to Sepharose. The enzyme was active between pH 3 and 6.5 and had a pH optimum at pH 5. A MW of 92000 was obtained by sodium dodecyl sulfate-acrylamide gel electrophoresis and a sedimentation coefficient of 4.65 was obtained from sedimentation velocity experiments. β-N-Acetylaminoglucohydrolase had a Km of 2.5 × 10?4 M using the p-nitrophenyl N-acetyl β-D-glucosaminidine as the substrate.  相似文献   

18.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

19.
A bioactive peptide containing a glutamine-linked oligosaccharide was chemo-enzymatically synthesized by use of the solid-phase method of peptide synthesis and the transglycosylation activity of endo-β-N-acetylglucosaminidase. Substance P, a neuropeptide, is an undecapeptide containing two l-glutamine residues. A substance P derivative with an N-acetyl-d-glucosamine residue attached to the fifth or sixth l-glutamine residue from the N-terminal region was chemically synthesized. A sialo complex-type oligosaccharide derived from a glycopeptide of hen egg yolk was added to the N-acetyl-d-glucosamine moiety of the substance P derivative using the transglycosylation activity of endo-β-N-acetylglucosaminidase from Mucor hiemalis, and a substance P derivative with a sialo complex-type oligosaccharide attached to the l-glutamine residue was synthesized. This glycosylated substance P was biologically active, although the activity was rather low, and stable against peptidase digestion. The oligosaccharide moiety attached to the l-glutamine residue of the peptide was not liberated by peptide-N4-(N-acetyl-β-d-glucosaminyl) asparagine amidase F.  相似文献   

20.
Glycosaminoglycans, lipids and lysosomal enzymes were measured in brain, liver and spleen of a patient with mucopolysaccharidosis Type III B (α-N-Acetylglucosaminidase deficiency). The glycosaminoglycan content of the brain gray and white matter, leptomeninges, spleen and liver of the patient was 4, 3, 10, and 100 times greater than that of the respective tissues of normal controls. Partially degraded heparan sulfate, the concentration of which increased 17 times in the brain, accounted for the increased glycosaminoglycan content of all tissues. The concentration of the gangliosides GM2, GM3 and GD3 was markedly increased in the gray matter, and to a smaller degree in the white matter. Ceramide dihexoside was also increased in the gray matter of the patient with MPS III B. The activity of α-N-Acetylglucosaminidase was absent from the brain and the liver and greatly diminished in the spleen. β-Glucuronidase. β-glucosaminidase and α-l -iduronidase were more active than normally and the activity of α-galactosidase and β-galactosidase was markedly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号