首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed which illustrate the various ways EDTA can influence lipid peroxidation. Either detergent-dispersed linoleate, or liposomes made from extracted microsomal phospholipids were utilized as substrates for peroxidation. Peroxidation was accomplished using Fe2+ or Fe3+. In systems utilizing Fe2+, EDTA chelation facilitated Fe2+ autoxidation which in turn caused peroxidation of detergent-dispersed linoleate. Peroxidation was not initiated during EDTA-Fe2+ autoxidation when the substrate lipids were in a liposomal configuration. Systems utilizing Fe3+ required an enzyme (either xanthine oxidase or NADPH-cytochrome P450 reductase) to reduce the iron for peroxidative activity. EDTA chelation of Fe3+ enhanced the xanthine oxidase and NADPH-cytochrome P450 reductase-catalyzed peroxidation of detergent-dispersed linoleate, presumably by facilitating the reduction of Fe3+. Catalase and mannitol inhibited both EDTA-Fe2+- and EDTA-Fe3+-dependent lipid peroxidation. EDTA-Fe3+ was not capable of initiating peroxidation of phospholipid liposomes following enzymatic reduction by either enzyme, but ADP-chelated iron effectively initiated liposomal peroxidation in similar systems. With xanthine oxidase-catalyzed peroxidation of liposomes with ADP-Fe3+, the inclusion of EDTA-Fe3+ caused a modest enhancement of activity. EDTA-Fe3+ greatly stimulated NADPH-cytochrome P450 reductase-catalyzed peroxidation of liposomes with ADP-Fe3+. In contrast, the addition of EDTA, rather than EDTA-Fe3+ inhibited the liposomal peroxidation catalyzed by either enzyme with ADP-Fe3+ when the EDTA concentration exceeded the concentration of Fe3+.  相似文献   

2.
Crude striatum synaptosomes (P2 fraction) from Fisher 344 female rats were incubated in the presence of ADP-chelated Fe3+ (0.5–50 M) and ascorbate (250 M). Intrasynaptosomal conversion of tyrosine to dopamine (DA) was measured by14CO2 evolution froml-[1-14C]tyrosine in the absence of added cofactors and DOPA decarboxylase. Malondialdehyde (MDA) was measured as an index of lipid peroxidation. A concentration-dependent inhibition of DA synthesis by ADP-Fe3+/ascorbate was found with 50% inhibition occurring at 2.5 M Fe3+ concentration. This was accompanied by marked accumulation of MDA. Ascorbate or ADP alone did not affect DA synthesis and ADP-Fe3+ in the absence of exogenous ascorbate was effective only above 25 M. Exogenously added MDA did not inhibit DA synthesis. Purified synaptosomes were isolated from peroxidized and control P2 fractions using sucrose gradients. Membrane microviscosity of the purifled synaptosomes was assessed by nitroxyl spin labels of stearic acid using electron paramagetic resonance techniques. There was a significant increase in membrane microviscosity as a result of ADP-Fe3+/ascorbate induced peroxidation. Maleimide nitroxide spin-label binding to protein sulhydryls was significantly modified by peroxidation of striatum synaptosomes. The weakly immobilized component of the sulhydryl spin-label (w) was drastically decreased whereas the strongly immobilized component (s) was modified less, thus leading to a marked reduction of w/s ratio. The exposure of striatum synaptosomes to the peroxidizing system resulted in a significant increase in total iron and in a 25% decrease in protein sulhydryl content. It is concluded that ironinduced damage to the DA synthetic system is mediated by alterations of the structural properties of nerve ending membranes.  相似文献   

3.
The role of irradiance on the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) was examined in the leaves of Pisum sativum L. plants grown under low (LL) or high (HL) irradiance (PPFD 50 or 600 μmol m−2 s−1) and exposed after detachment to 5 mM Pb (NO3)2 for 24 h. The activities of both enzymes increased in response to LL compared with HL and no effect of Pb ions was observed. Photosystem (PS) 1 and PS 2 activities were also investigated in chloroplasts isolated from these leaves. LL lowered PS 1 electron transport rate and changes in photochemical activity of PS 1 induced by Pb2+ were visible only in the chloroplasts isolated from leaves of LL grown plants. PS 2 activity was influenced similarly by Pb ions at both PPFD. This study demonstrates that leaves of HL grown plants were less sensitive to lead toxicity than those from LL grown plants. Changes in electron transport rates were the main factors responsible for the generation of reactive oxygen species in the chloroplasts and as a consequence, in induction of antioxidant enzymes.  相似文献   

4.
以未老化和人工老化后的沙葱(Allium mongolicum Regel.)种子为材料,采用氯化铈(Ce3+)和氯化镧(La3+)浸种,测定种子萌发和生理指标,探讨Ce3+和La3+浸种对种子萌发、老化种子活力和生理特性的影响。结果显示:(1)在老化0~5 h时,Ce3+和La3+处理可显著促进沙葱种子萌发,提高种子活力;在老化5 h后,Ce3+和La3+处理对种子萌发无明显促进作用。(2)在老化0~15 h时,Ce3+和La3+处理的沙葱种子中抗氧化酶活性和抗坏血酸(AsA)含量提高,其超氧阴离子自由基(O2-·)产生速率、过氧化氢(H2O2)含量和丙二醛(MDA)含量显著降低;在老化15 h后,Ce3+和La3+处理的种子抗氧化酶活性提高、AsA含量降低,O2-·产生速率和MDA含量提高。(3)在老化5 h时,沙葱种子呼吸速率发生跃变达到最大,Ce3+和La3+处理显著降低了种子呼吸速率。(4)Ce3+和La3+处理在老化0~5 h时提高了沙葱种子超弱发光(UWL)强度,但在老化5 h后沙葱种子的UWL强度降低。研究认为,在沙葱种子人工老化初期,Ce3+和La3+浸种处理可以诱导增强种子抗氧化酶活性和提高AsA含量,有效清除因老化产生积累的过量活性氧(ROS),减轻过氧化伤害,提高种子活力;种子老化中后期,其内部ROS产生与清除系统发生紊乱,加剧了ROS对种子结构的损伤,Ce3+和La3+浸种处理的缓解效应丧失。  相似文献   

5.
Polyamine metabolism, as well as spermine (Spm) antioxidant properties, were studied in wheat leaves under Cd2+ or Cu2+ stress. The oxidative damage produced by both metals was evidenced by an increased of thiobarbituric acid reactive substances (TBARS) and a significant decrease in glutathione under both metal treatments. Ascorbate peroxidase (APOX) and glutathione reductase (GR) activities were reduced by both metals to values ranging from 30% to 64% of the control values. Conversely, copper produced a raise in superoxide dismutase activity. The high putrescine (Put) content detected under Cd2+ stress (282% over the control) was induced by the increased activity of both enzymes involved in Put biosynthesis, arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). However, only ODC activity was increased in wheat leaves subjected to Cu2+ stress, leading to a lower Put rise (89% over the controls). Spermidine (Spd) content was not affected by metal treatments, while Spm was significantly reduced. Pretreatment with Spm completely reverted the metals-induced TBARS increase whereas metals-dependent H2O2 deposition on leaf segments (revealed using diaminobenzidine), was considerably reduced in Spm pretreated leaf segments. This polyamine failed to reverse the depletion in APOX activity and glutathione (GSH) content produced by Cd2+ and Cu2+, although it showed an efficient antioxidant behavior in the restoration of GR activity to control values. These results suggest that Spm could be exerting a certain antioxidant function by protecting the tissues from the metals-induced oxidative damage, though this effect was not enough to completely avoid Cd2+ and Cu2+ effect on certain antioxidant enzymes, though the precise mechanism of protection still needs to be elucidated.  相似文献   

6.
Increasing evidence shows that the overproduction of reactive oxygen species, induced by diabetic hyperglycemia, contributes to the development of several cardiopathologies. The susceptibility of diabetic hearts to oxidative stress, induced in vitro by ADP-Fe2+ in mitochondria, was studied in 12-month-old Goto-Kakizaki rats, a model of non-insulin dependent diabetes mellitus, and normal (non-diabetic) Wistar rats. In terms of lipid peroxidation the oxidative damage was evaluated on heart mitochondria by measuring both the O2 consumption and the concentrations of thiobarbituric acid reactive substances. Diabetic rats display a more intense formation of thiobarbituric acid reactive substances and a higher O2 consumption than non-diabetic rats. The oxidative damage, assessed by electron microscopy, was followed by an extensive effect on the volume of diabetic heart mitochondria, as compared with control heart mitochondria. An increase in the susceptibility of diabetic heart mitochondria to oxidative stress can be explained by reduced levels of endogenous antioxidants, so we proceeded in determinating -tocopherol, GSH and coenzyme Q content. Although no difference of -tocopherol levels was found in diabetic rats as compared with control rat mitochondria, a significant reduction in GSH (21.5% reduction in diabetic rats) and coenzyme Q levels of diabetic rats was observed. The data suggest that a significant decrease of coenzyme Q9, a potent antioxidant involved in the elimination of mitochondria-generated reactive oxygen species, may be responsible for an increased susceptibility of diabetic heart mitochondria to oxidative damage.  相似文献   

7.
The potential usefulness of an insect model to evaluate oxidative stress induced by environmental pollutants was examined with trivalent arsenic (As3+, NaAsO2) and pentavalent arsenic (As5+, Na2HAsO4) in adult female house flies, Musca domestica, and fourth-instar cabbage loopers, Trichoplusia ni. M. domestica was highly susceptible to both forms of arsenic following 48 h exposure in the drinking water with LC50s of 0.008 and 0.011% w/v for As3+ and As5+, respectively. T. ni larvae were susceptible to dietary As3+ with an LC50 of 0.032% w/w but seem to tolerate As5+ well with an LC50 of 0.794% concentration after 48 h exposure. The minimally acute LC5 dose of both As3+ and As5+ varied considerably but averaged 0.005% for both insects. The potential of both valencies of arsenic for inducing oxidative stress in the insects exposed ad libitum to approximately LC5 levels was assessed. The parameters examined were the alterations of the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST), the peroxidase activity of glutathione transferase (GSTPX), and glutathione reductase (GR), and increases in lipid peroxidation and protein oxidation. SOD (1.3-fold), GST (1.6-fold), and GR (1.5-fold) were induced by As3+ in M. domestica but CAT and GSTPX were not affected. As5+ had no effect on M. domestica. In T. ni, the antioxidant enzyme activities were not affected by As3+ except for SOD which was suppressed by 29.4% and GST which was induced by 1.4-fold. As5+ had no effect except the suppression of SOD by 41.2%. Lipid peroxidation and protein oxidation, which represent stronger indices of oxidative stress, were elevated in both insects by up to 2.9-fold. However, based on the antioxidant enzyme response to the arsenic anions, the mode of action of arsenic induced oxidative stress may differ between the two insects. Until this aspect is further clarified, evidence at this time favors the prospect of As3+ as a pro-oxidant, especially for M. domestica. © 1995 Wiley-Liss, Inc.  相似文献   

8.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

9.
The aim of the present study was to examine the antioxidant activity of three Veronica species (Plantaginaceae). The antioxidant potential of various extracts obtained from aerial flowering parts was evaluated by DPPH-free (1,1-diphenyl-2-picrylhydrazyl-free) radical scavenging activity and ferric-reducing antioxidant power assays. Considerable antioxidant activity was observed in the plant samples (FRAP values ranged from 0.97 to 4.85 mmol Fe2+/g, and DPPH IC50 values from 12.58 to 66.34 μg/ml); however, these levels were lower than the activity of the control compound butylated hydroxytoluene (BHT) (FRAP: 10.58 mmol Fe2+/g; DPPH IC50: 9.57 μg/ml). Also, the in vivo antioxidant effects were evaluated in several hepatic antioxidant systems in rats (activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase, glutathione content and level of thiobarbituric acid reactive substances) after treatment with different Veronica extracts, or in combination with carbon tetrachloride (CCl4). Pretreatment with 100 mg/kg b.w. of Veronica extracts inhibited CCl4-induced liver injury by decreasing TBA-RS level, increasing GSH content, and bringing the activities of CAT and Px to control levels. The present study suggests that the extracts analyzed could protect the liver cells from CCl4-induced liver damage by their antioxidative effect on hepatocytes.  相似文献   

10.
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c?+?c 1 loss. During Fe2+-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe2+. Avocado oil also decreased ROS generation in Fe2+-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.  相似文献   

11.
Powerful antioxidant activity of human plasma was demonstrated by measuring the thiobarbituric acid reaction and Fe+2-induced chemiluminescence. Inhibition of lipid peroxidation was shown both for plasma lipids and for the suspension of egg lipoproteins, which was taken as a model system. The inhibitory effect of plasma peroxidation was removed by azide Na taken in the concentration of 0.5 mg/ml, but caeroplasmin activity in the plasma was completely suppressed at NaN3 concentration equal to 0.1 mg/ml. A low correlation (r = 0.75) between caeruloplasmin activity in the blood plasma and extent of chemiluminescence activation obtained in the presence of NaN3 was found. The presented data led to an assumption that only a part of lipid peroxidation inhibitors in the plasma can be attributed with caeruloplasmin.  相似文献   

12.
In the presence of TPNH, O2 and ADP-Fe+3 rat liver microsomes yield difference spectral changes at 237 nm and 267–270 nm that correlate with the kinetics of lipid peroxidation as measured by the rate of malonaldehyde formation and O2 and TPNH consumption. Mn+2 EDTA, aniline, and reduced glutathione were inhibitory. It is suggested that the difference spectral changes at 237 nm and 267–270 nm are essentially due to conjugated diene and malonaldehyde formation, respectively.  相似文献   

13.
We investigated the effect of moderate Cu2+ and Cd2+ stress by applying chlorophyll (Chl) fluorescence and P700 absorbance measurements to monitor the photosynthetic electron transport activity of 3-week-old Pisum sativum L. cv. Petit Proven?al plants grown in a modified Hoagland solution containing 50 ??M CuSO4 or 5 ??M CdCl2. Both heavy metals caused a slight inhibition in PSII photochemistry as indicated by the decrease in the effective quantum efficiency of PSII (??PSII), the maximum electron transport capacity (ETRmax), and the maximum quantum yield for electron transport (??). PSI photochemistry was also affected by these heavy metals. Cu2+ and Cd2+ decreased the quantum efficiency of PSI (??PSI) as well as the number of electrons in the intersystem chain, and the Cu2+ treatment significantly reduced the number of electrons from stromal donors available for PSI. These results indicate that PSII and PSI photochemistry of pea plants are both sensitive to moderate Cu2+ and Cd2+ stress, which in turn is easily detected and monitored by Chl fluorescence and P700 absorbance measurements. Therefore, monitoring the photochemistry of pea plants with these noninvasive, yet sensitive techniques offers a promising strategy to study heavy metal toxicity in the environment.  相似文献   

14.
The effect in vivo of hexavalent chromium (Cr6+) on the respiratory electron transport activity and production of superoxide (O2) radicals, was studied in submitochondrial particles (SMPs) prepared from mitochondria isolated from roots of 15‐day‐old pea (Pisum sativum L. cv. Azad) plants exposed to environmentally relevant (20 µm ) and acute (200 µm ) concentrations of chromium for 7 d. A concentration ‐dependent inactivation of electron transport activity from both NADH to O2 (NADH oxidase) and succinate to O2 (succinate oxidase) was observed. The electron transport activity was more sensitive to Cr6+ with NADH as the substrate than with succinate as the substrate. Although NADH dehydrogenase and succinate dehydrogenase were less affected, NADH: cytochrome c oxidoreductase and succinate: cytochrome c oxidoreductase activities were prominently affected by Cr6+. Cytochrome oxidase was the most susceptible complex of mitochondrial membranes to Cr6+, exhibiting maximal inactivation of activity both at 20 and 200 µm chromium concentrations. Cr6+ increased the generation of O2 radicals. This effect was more evident at 200 than at 20 µm . A significant increase in lipid peroxidation of mitochondrial membranes at 200 µm Cr6+ was the physiological impact of the metal‐induced enhanced generation of O2 radicals. An increase in superoxide dismutase (SOD) activity at 20 µm Cr6+ towards enhanced production of O2 radicals appeared to be a defence response in pea root mitochondria that, however, could not be sustained at 200 µm Cr6+. The results obtained concerning inactivation of mitochondrial electron transport and subsequent enhancement in the generation of O2 radicals suggest that root mitochondria are an important target of Cr6+‐induced oxidative stress in pea.  相似文献   

15.
Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT1 and MT2 melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 2′,7′-dichlorodihydrofluorescein (DCFH) in the DCFH-diacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H2O2-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, too.  相似文献   

16.
CO2 exchange, variable chlorophyll fluorescence, the intensity of lipid peroxidation (POL), and the activity of antioxidant enzymes in leaves of two-week-old pea seedlings (Pisum sativum L.) exposed to 0.01, 0.1, and 1 mM aqueous solutions of Cd(NO3)2 for 2 h were studied. Incubation with Cd2+ ions resulted in a reduction of the maximum quantum efficiency of photosynthesis, CO2 uptake rate, and photosystem II (PSII) activity, as assessed by F v/F 0 ratio. The intensity of POL in leaves of all treated seedlings was below or close to the control level. The activity of superoxide dismutase (SOD) and glutathione reductase (GR) increased in all treatments; the activity of ascorbate peroxidase (AP) exceeded the control level only in seedlings exposed to the high Cd2+ concentration (1 mM), and the activity of peroxidase increased at the low concentration (0.01 mM). We found that the reduction in the activity of the photosynthetic apparatus under conditions of 2-h-long Cd2+-induced stress was not related to an intensification of POL processes. It was concluded that stimulation of the activity of antioxidant enzymes—SOD, GR, AP, and peroxidase—is a pathway for pea plant adaptation to toxic effect of cadmium.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 21–26.Original Russian Text Copyright © 2005 by Balakhnina, Kosobryukhov, Ivanov, Kreslavskii.  相似文献   

17.
Plant cell responses to heavy metals: molecular and physiological aspects   总被引:3,自引:0,他引:3  
The effect of lead, cadmium and cooper on protein pattern, free radicals and antioxidant enzymes in root of Lupinus luteus L. were investigated. Heavy metals inhibited growth of lupin roots, which was accompanied by increased synthesis and accumulation of a 16 kDa polypeptide (Przymusiński et al. 1991 Biochem. Physiol. Pflanzen., 187:51–57). This component has been earlier identified as immunologically related to Cu,Zn-superoxide dismutase (Przymusiński et al. 1995 Env.Exp.Bot., 35:485–495). However, more detailed study revealed that this stress-stimulated protein is composed of four to six polypeptides of different electrophoretic mobility. The most abundant polypeptides of the 16kDa region were found to be closely homologous to pathogen related proteins. The number and intensity of these polypeptides was highly variable in roots of individual seedlings, which suggests that they might represent separate allelic forms. Electron paramagnetic spectra revealed that at low lead concentrations the amplitude of the first derivative was similar to the control and distinctly increased at higher metal concentrations. On the other hand, at the lower lead concentrations the activity of antioxidant enzymes increased, whereas at higher metal doses the enzyme activities did not raise further (SOD) or even dropped (CAT, APOX). This implies that the responses of antioxidant system to lead is dose-dependent stimulated by low metal concentrations, whereas at the higher metal level the free radical emission is beyond the quenching capacity of antioxidant enzymes, which in turn might contribute to the reduced root growth. The effect of various heavy metals: Pb2+, Cd2+ and Cu2+ on phytochelatins and antioxidant enzymes depends on the kind of metal ion. Pb2+ and Cd2+ stimulated the PCs formation whereas Cu2+ was not effective. On the other hand, in root exposed to Cu the activity of catalase (CAT) was the highest as was the production of H2O2. The strong oxidative effect of Cu2+ ions which were not complexed by PCs suggests that these peptides might by involved in the cellular defense system by binding excessive heavy metal ions. On the basis of our results it can be concluded that in lupin roots exposed to heavy metals there is a complex defense system against metal phytotoxicity, which comprises of specific proteins, antioxidant enzymes and phytochelatins.  相似文献   

18.
The activity of lactate dehydrogenase (LDH, EC1.1.1.27) is often changed upon inflammatory responses in animals. Lanthanoid (Ln) was shown to provoke various inflammatory responses both in rats and mice; however, the molecular mechanism by which Ln3+ exert its toxicity has not been completely understood, especially that we know little about the mechanism of the interaction between Ln with 4f electron shell and alternation valence and LDH. In this report, we investigated the mechanisms of LaCl3, CeCl3, and NdCl3 on LDH activity in vivo and in vitro. Our results showed that La3+, Ce3+, and Nd3+ could significantly activate LDH in vivo and in vitro; the order of activation was Ce3+?>?Nd3+?>?La3+?>?control. The affinity of LDH for Ce3+ was higher than Nd3+ and La3+; the saturated binding sites for Ce3+ on the LDH protein were 1.2 and for La3+ and Nd3+ 1.55. Ln3+ caused the reduction of exposure degree of cysteine or tryptophan/tyrosine of LDH, the increase of space resistance, and the enhancement of α-helix in secondary structure of LDH, which was greatest in Ce3+ treatment, medium in Nd3+ treatment, and least in La3+ treatment. It implied that the changes of structure–function on LDH caused by Ln3+ were closely related to the characteristics of 4f electron shell and alternation valence in Ln.  相似文献   

19.
This study was performed with the objective of assessing the antioxidant response of the lung of mice to different rare earths. LaCl3, CeCl3, and NdCl3 at a higher dose of 20 mg/kg body weight were injected into the nasal cavity of ICR mice for consecutive 14 days, respectively. The increase of pulmonary lipids peroxide produced by Ln suggested an oxidative attack that was activated by a reduction of antioxidative defense mechanisms as measured by analyzing the activities of superoxide dismutase, catalase, ascorbate peroxidase, and total antioxidant capacity, as well as antioxidant levels such as glutathione and ascorbic acid, which were greatest in Ce3+ treatment, medium in Nd3+, and least in La3+. It implied that the antioxidative responses of lung may be involved in 4f shell and alternable valence properties of Ln-induced lung toxicity.  相似文献   

20.
Polyamine oxidase, purified 260-fold from maize shoots, was light yellow in colour. Maximum light-absorption was at 450 nm and was decreased by the addition of either sodium dithionite or spermidine, but not by putrescine. Under aerobic conditions, the enzyme could use p-benzoquinone as an electron acceptor. Cu2+ inhibited the enzyme activity, while SO3 was stimulatory. Several metal-binding agents and thiol reagents were without effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号