首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenorhabdus spp., are gram-negative bacterial symbionts of entomopathogenic nematodes in the genus Steinernema. A specialized and intimate relationship exists between nematode and bacteria, affecting many of their life history traits, such as nutrition, dispersal, host-finding, foraging and defense from biotic and abiotic factors. Xenorhabdus currently comprises more than 20 species isolated from Steinernema spp. with diverse host range, host foraging behavior, reproductive modes and environmental tolerance. Xenorhabdus phylogenies have historically been based on 16s rDNA sequence analyses, and only recently has data from housekeeping genes been employed. The prevalence of lateral gene transfer among bacteria calls for a wider perspective when considering their phylogeny. With the increasing number of Xenorhabdus species and strains, various perspectives need to be considered for investigating the evolutionary history of these nematode bacterial symbionts, In this study, we reconstruct the evolutionary histories of 30 species of Xenorhabdus considering the traditional 16s rDNA gene region as well as the housekeeping genes recA and serC. Datasets were analyzed individually and then combined, using a variety of phylogenetic criteria.  相似文献   

2.
A method for producing up to 2000 million infectives of Neoaplectana bibionis per container is described and is applicable to other species of Neoaplectana and Heterorhabditis spp. The nematodes were cultured within autoclavable plastic bags, on crumbed polyether polyurethane sponge coated with chicken offal homogenate that had been sterilised and inoculated with the primary form of the appropriate symbiotic bacterium (Xenorhabdus spp.). Procedures for extracting and cleaning the nematodes on a large scale are described. Nematodes were stored and transported on clean sponge in aerated polyethylene tubes. The techniques are suitable for industrial use with little further development.  相似文献   

3.
The symbiotic bacterium strain, SK-1 isolated from Steinernema kushidai, a new species of entomopathogenic nematode, was compared with other strains of Xenorhabdus species. Like other Xenorhabdus nematophilus strains, this new strain is gram-negative, facultatively anaerobic, peritrichously flagellated rod and negative for catalase and nitrate reduction. It can be distinguished from the other Xenorhabdus spp. by differences in reactions to phenylalanine deaminase, no acid production from myo-inositol and utilizations of inosine, dl-malate, formate and methanol. Intra-haemocoelic injection of actual cells or liquid culture supernatant into sixth instar larvae of Spodoptera litura for either Phase I or II variants were not pathogenic. Other strains of X. nematophilus showed pathogenicity for whole cell injections. The supernatants of strain D-1 and ATCC 19061, which are symbionts of Steinernema carpocapsae were pathogenic, however pathogenicity decreased and then terminated by increases in temperature.  相似文献   

4.
Xenorhabdus spp. and Photorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the families Steinernematidae and Heterorhabditidae, respectively, were shown to produce different lipases when they were grown on suitable nutrient agar. Substrate specificity studies showed that Photorhabdus spp. exhibited a broad lipase activity, while most of the Xenorhabdus spp. secreted a specific lecithinase. Xenorhabdus spp. occur spontaneously in two variants, phase I and phase II. Only the phase I variants of Xenorhabdus nematophilus and Xenorhabdus bovienii strains produced lecithinase activity when the bacteria were grown on a solid lecithin medium (0.01% lecithin nutrient agar; 24 h of growth). Five enzymatic isomers responsible for this activity were separated from the supernatant of a X. nematophilus F1 culture in two chromatographic steps, cation-exchange chromatography and C18 reverse-phase chromatography. The substrate specificity of the X. nematophilus F1 lecithinase suggested that a phospholipase C preferentially active on phosphatidylcholine could be isolated. The entomotoxic properties of each isomer were tested by injection into the hemocoels of insect larvae. None of the isomers exhibited toxicity with the insects tested, Locusta migratoria, Galleria mellonella, Spodoptera littoralis, and Manduca sexta. The possible role of lecithinase as either a virulence factor or a symbiotic factor is discussed.  相似文献   

5.
Xenorhabdus and Photorhabdus spp. are bacterial symbionts of entomopathogenic nematodes (EPNs). In this study, we isolated and characterized Xenorhabdus and Photorhabdus spp. from across Thailand together with their associated nematode symbionts, and characterized their phylogenetic diversity. EPNs were isolated from soil samples using a Galleria-baiting technique. Bacteria from EPNs were cultured and genotyped based on recA sequence. The nematodes were identified based on sequences of 28S rDNA and internal transcribed spacer regions. A total of 795 soil samples were collected from 159 sites in 13 provinces across Thailand. A total of 126 EPNs isolated from samples taken from 10 provinces were positive for Xenorhabdus (n = 69) or Photorhabdus spp. (n = 57). Phylogenetic analysis separated the 69 Xenorhabdus isolates into 4 groups. Groups 1, 2 and 3 consisting of 52, 13 and 1 isolates related to X. stockiae, and group 4 consisting of 3 isolates related to X. miraniensis. The EPN host for isolates related to X. stockiae was S. websteri, and for X. miraniensis was S. khoisanae. The Photorhabdus species were identified as P. luminescens (n = 56) and P. asymbiotica (n = 1). Phylogenenic analysis divided P. luminescens into five groups. Groups 1 and 2 consisted of 45 and 8 isolates defined as subspecies hainanensis and akhurstii, respectively. One isolate was related to hainanensis and akhurstii, two isolates were related to laumondii, and one isolate was the pathogenic species P. asymbiotica subsp. australis. H. indica was the major EPN host for Photorhabdus. This study reveals the genetic diversity of Xenorhabdus and Photorhabdus spp. and describes new associations between EPNs and their bacterial symbionts in Thailand.  相似文献   

6.
The insect-parasitic nematode, Steinernema feltiae Filipjev strain 42, was reared in liquid culture along with its bacterial symbiont, Xenorhabdus nematophilus Thomas &Poinar. First-stage juveniles developed into reproducing adults in a maintenance salts medium containing resuspended Xenorhabdus cells and the yeast Kluyveromyces marxianus (Hansen) van der Walt or cholesterol. Cultures with media depths greater than 4 mm required aeration. Nematode populations increased as bacterial density increased. An optimal culture system was obtained when the bacteria and nematodes developed in a semidefined medium containing tryptic soy, yeast extract, and cholesterol and were incubated on a rotary shaker at 25 ± 1 C. Under these conditions, up to 86% of the final population were infective juveniles.  相似文献   

7.
A new species, Xenorhabdus japonicus, is proposed as the bacterial symbiont of Steinernema kushidai isolated from field soil in Shizuoka Prefecture, Japan. Xenorhabdus japonicus could be distinguished phenotypically and genetically from other Xenorhabdus spp. The type strain of the species, SK-1, a Gram-negative, facultative anaerobe and peritrichously flagellated rod, has colonies with primary and secondary forms. The strain can be differentiated from the type strain of Xenorhabdus nematophilus by several characters, including the formation of arginine dehydrolase, phenylalanine deaminase and lysine decarboxylase, the assimilation of inosine and L-proline and acid production from inositol. The major cellular fatty acids are 16:0, cyclo 17:0 and 18:1. The ubiquinone system is Q-8. The G+C content of DNA is 45.9 mol%. The DNA of strain SK-1 has 20 to 58% homology with that of the type strains of other Xenorhabdus spp.Y. Nishimura, A. Hagiwara and T. Suzuki are with the Department of Applied Biological Science, Science University of Tokyo, Noda 278, Japan, and SDS Biotech K.K., Tsukuba Technology Centre, Tsukuba 300-26, Japan  相似文献   

8.

Background  

Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i) a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii) that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i) two nematode species: S. carpocapsae and S. scapterisci and (ii) their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella). Three conditions of competition between nematodes were tested: (i) infection of insects with aposymbiotic IJs (i.e. without symbiont) of both species (ii) infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii) infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts) of both species.  相似文献   

9.
The bacterial species of the genus Xenorhabdus in the family Enterobacteriaceae have a mutualistic association with steinernematid entomopathogenic nematodes (EPNs), which have been used as biological control agents against soil insect pests. In this study we present the genetic and phenotypic characterizations of the Xenorhabdus species isolated from steinernematid nematodes in Japan. The 18 Japanese Xenorhabdus isolates were classified into five bacterial species based on 16S ribosomal RNA (16S rRNA) gene sequences: Xenorhabdus bovienii, Xenorhabdus hominickii, Xenorhabdus indica, Xenorhabdus ishibashii, and Xenorhabdus japonica. There was no genetic variation between the 16S RNA sequences among the three X. ishibashii isolates, 0–0.1% variation among the five X. hominickii isolates, and 0–0.5% among the eight X. bovienii isolates. Phenotypic characterization demonstrated that representative isolates of the five bacterial species shared common characteristics of the genus Xenorhabdus, and only X. hominickii isolates produced indole. Symbiotic association and co-speciation of Xenorhabdus bacteria with Steinernema nematodes from Japan are discussed.  相似文献   

10.
Xenorhabdus nematophilus sp., an insect-pathogenic bacterium, was newly isolated from Korean entomopathogenic nematode ofSteinernema carpocapsae, which can be used as a useful bioinsecticide. Primary and secondary form variants ofXenorhabdus nematophilus were observed when culturedin vitro. Primary form variants adsorbed bromothymol blue, while secondary form did not. However, many other characters of two variants were very similar. The variants were all rod-shaped and cell size was highly variable ranging from 0.5 by 2.0 μm to 1.0 by 5.0 μm. Both produced highly toxic substances and killed the insect larva within 20–38 hr, indicating that insect pathogenicity ofXenorhabdus is not directly associated with its phase variation. In addition, cell-free culture supernatant ofXenorhabdus was sufficient to kill the insect larva by injecting it into insect hemolymph; however, cell-harboring culture broth was more effective for killing the insect. The use ofXenorhabdus nematophilus may provide a potential alternative toBacillus thuringiensis (Bt) toxins.  相似文献   

11.
Xenorhabdus nematophilus is an insect pathogen that lives in a symbiotic association with a specific entomopathogenic nematode. During prolonged culturing, variant cells arise that are deficient in numerous properties. To understand the genetic mechanism underlying variant cell formation, a transposon mutagenesis approach was taken. Three phenotypically similar variant strains of X. nematophilus, each of which contained a single transposon insertion, were isolated. The insertions occurred at different locations in the chromosome. The variant strain, ANV2, was further characterized. It was deficient in several properties, including the ability to produce antibiotics and the stationary-phase-induced outer membrane protein, OpnB. Unlike wild-type cells, ANV2 produced lecithinase. The emergence of ANV2 from the nematode host was delayed relative to the emergence of the parental strain. The transposon in ANV2 had inserted in a gene designated var1, which encodes a novel protein composed of 121 amino acid residues. Complementation analysis confirmed that the pleiotropic phenotype of the ANV2 strain was produced by inactivation of var1. Other variant strains were not complemented by var1. These results indicate that inactivation of a single gene was sufficient to promote variant cell formation in X. nematophilus and that disruption of genetic loci other than var1 can result in the same pleiotropic phenotype.  相似文献   

12.
The susceptibility of third state larvae of the sheep blowfly Lucilia cuprina in sand to 11 species and strains of Heterorhabditis and Neoaplectana and to one species of an undescribed steiner-nematid was tested at various dosages. Larvae were susceptible to all, although far less so to one strain of N. bibionis and to the undescribed steinernematid. Estimates of LD50 and LD90 are presented for each effective strain. Heterorhabditis spp. were able to reproduce in L. cuprina larvae subjected to low dosages of effective-stage juveniles whereas Neoaplectana spp. were not able to reproduce at any dosage. The possibility exists for using Heterorhabditis species as a control agent against L. cuprina larvae after these have left the sheep to pupate in the soil.  相似文献   

13.
Among fungi, species of the genus Pochonia Batista & O.M. Fonseca are considered as promising biological control agents with high potential to reduce root-knot nematode (RKN) and nematode populations. In this research we investigated Fars province of Iran for the presence of Pochonia spp., compared pathogenicity of different Pochonia species on eggs of RKN in vitro, and selected the best isolates for further studies. During 2004-2006, 128 soil samples of fields infested with cyst nematodes and 18 soil samples infested with RKN were collected from Fars province of Iran. In vitro pathogenicity tests were carried out on 36 isolates of Pochonia spp. obtained from CBS and IRAN culture collections. The seven best isolates of this experiment were selected for greenhouse test and their ability in controlling RKN was examined in natural soil. In greenhouse test fresh weight of plant’s tops and roots, gall index, nematode multiplication, second-stage juveniles’ population in soil, reproduction rate (Pf/Pi), proportion of infected eggs, control efficacy, root colonization and soil colony forming units were determined. In vitro pathogenicity of Pochonia on RKN eggs varied between 39% and 95% eggs infected. In greenhouse experiment, three isolates are promising for control of RKN and selected isolates are subjected to more extensive testing to determine their effectiveness in a range of conditions before being developed as commercial biological control agents.  相似文献   

14.
Phase variation in Xenorhabdus and Photorhabdus spp. has a significant impact on their symbiotic relationship with entomopathogenic nematodes by altering the metabolic by-products upon which the nematodes feed. The preferential retention of the phase I variant by the infective-stage nematode and its better support for nematode reproduction than phase II indicates its importance in the bacterial-nematode interactions. However, there is no obvious role for phase II in these interactions. This study has revealed differences in the respiratory activity between the two phases of Xenorhabdus nematophilus A24 and Photorhabdus luminescens Hm. After experiencing periods of starvation, phase II cells recommenced growth within 2 to 4 h from the addition of nutrients, compared with 14 h for phase I cells, indicating a more efficient nutrient uptake ability in the former. The levels of activity of major respiratory enzymes were 15 to 100% higher in phase II cells from stationary cultures in complex media than in phase I cells. Transmembrane proton motive force measurements were also higher by 20% in phase II under the same conditions. The increased membrane potentials reflect upon the ability of the phase II variant to respond to nutrients, both through growth and nutrient uptake. It is postulated that while phase I cells are better adapted to conditions in the insect and the nematode, phase II cells may be better adapted to conditions in soil as free-living organisms.  相似文献   

15.
When logs infected with Scolytus scolytus were sprayed with the DD-136 strain of Neoaplectana sp. in solutions of either distilled water, glycerin, or P.B.I. wetting agent, the nematodes were efficiently dispersed and entered the logs through the insect entrance holes in the bark.Logs treated with Neoaplectana sp. were found to contain a significantly higher proportion of dead, nematode-infected insects. No difference was found between the various methods of nematode application. The results indicate that Neoaplectana sp. may have a possible role in the control of S. scolytus in elm logs.  相似文献   

16.
Entomopathogenic nematodes (EPNs) are small worms whose ecological behaviour consists to invade, kill insects and feed on their cadavers thanks to a species-specific symbiotic bacterium belonging to any of the genera Xenorhabdus or Photorhabdus hosted in the gastro-intestinal tract of EPNs. The symbiont provides a number of biological functions that are essential for its EPN host including the production of entomotoxins, of enzymes able to degrade the insect constitutive macromolecules and of antimicrobial compounds able to prevent the growth of competitors in the insect cadaver. The question addressed in this study was to investigate whether a mammalian pathogen taxonomically related to Xenorhabdus was able to substitute for or “hijack” the symbiotic relationship associating Xenorhabdus and Steinernema EPNs. To deal with this question, a laboratory experimental model was developed consisting in Galleria mellonella insect larvae, Steinernema EPNs with or without their natural Xenorhabdus symbiont and Yersinia pseudotuberculosis brought artificially either in the gut of EPNs or in the haemocoel of the insect larva prior to infection. The developed model demonstrated the capacity of EPNs to act as an efficient reservoir ensuring exponential multiplication, maintenance and dissemination of Y. pseudotuberculosis.  相似文献   

17.
Xenorhabdus spp. and Photorhabdus spp. are major insect bacterial pathogens symbiotically associated with nematodes. These bacteria are transported by their nematode hosts into the hemocoel of the insect prey, where they proliferate within hemolymph. In this work we report that wild strains belonging to different species of both genera are able to produce hemolysin activity on blood agar plates. Using a hemocyte monolayer bioassay, cytolytic activity against immunocompetent cells from the hemolymph of Spodoptera littoralis (Lepidoptera: Noctuidae) was found only in supernatants of Xenorhabdus; none was detected in supernatants of various strains of Photorhabdus. During in vitro bacterial growth of Xenorhabdus nematophila F1, two successive bursts of cytolytic activity were detected. The first extracellular cytolytic activity occurred when bacterial cells reached the stationary phase. It also displayed a hemolytic activity on sheep red blood cells, and it was heat labile. Among insect hemocyte types, granulocytes were the preferred target. Lysis of hemocytes by necrosis was preceded by a dramatic vacuolization of the cells. In contrast the second burst of cytolytic activity occurred late during stationary phase and caused hemolysis of rabbit red blood cells, and insect plasmatocytes were the preferred target. This second activity is heat resistant and produced shrinkage and necrosis of hemocytes. Insertional inactivation of flhD gene in X. nematophila leads to the loss of hemolysis activity on sheep red blood cells and an attenuated virulence phenotype in S. littoralis (A. Givaudan and A. Lanois, J. Bacteriol. 182:107–115, 2000). This mutant was unable to produce the early cytolytic activity, but it always displayed the late cytolytic effect, preferably active on plasmatocytes. Thus, X. nematophila produced two independent cytolytic activities against different insect cell targets known for their major role in cellular immunity.  相似文献   

18.
A negative-selection vector, pHX1, was constructed for use in transposon mutagenesis of Xenorhabdus nematophilus ATCC 19061. pHX1 contains the Bacillus subtilis levansucrase gene which confers sucrose sensitivity. In addition, various Tn5-containing plasmids with different replication origins were transferred by conjugation from Escherichia coli into X. nematophilus ATCC 19061, and one of these plasmids, pGS9, yields Tn5 insertion mutants of X. nematophilus ATCC 19061. By using these two delivery vehicles, more than 250 putative Tn5 insertion mutants of X. nematophilus ATCC 19061 were isolated and were then characterized. Mutants that were altered in bromothymol blue adsorption, ability to lyse sheep erythrocytes, production of antibiotics on a variety of media, and virulence for Galleria mellonella were found.  相似文献   

19.
20.
The effectiveness of various dosages of different species/strains of nematodes was compared for Galleria mellonella and various pest insects that live in or pupate in soil. Neoaplectana feltiae (= carpocapsae), the only nematode species tested by most other workers, was never the most infective for any of the insect species tested and was least infective for two. All species/strains of nematode were able to kill insects of each species. The degree of infectivity of each of the nematode species/strains for different hosts varied considerably, and no one species/strain of nematode was the most infective for all insect species. This indicates the importance of testing a number of nematode species against any particular insect before commencing field evaluations for biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号