首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.  相似文献   

4.
PPAR expression and function during vertebrate development   总被引:11,自引:0,他引:11  
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.  相似文献   

5.
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyl-transferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARbeta/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.  相似文献   

6.
We examined the expression of peroxisome proliferator-activated receptors (PPARs) and the role of PPARs in cytokine production in mouse bone marrow-derived mast cells (mBMMCs). mBMMCs expressed PPARbeta strongly and gamma slightly, but not alpha. Activation of mBMMCs with antigen or calcium ionophore resulted in the increased expression of PPARgamma mRNA specifically. 15-Deoxy-Delta(12, 14)-prostaglandin J(2) (15d-PGJ(2)) and troglitazone, all PPARgamma ligands, attenuated the antigen-induced cytokine production by mBMMCs. Carbaprostacyclin, a PPARbeta ligand, also inhibited cytokine production, whereas PPARalpha ligands did not. These results suggest that PPARbeta and gamma might be included in the negative regulation of mast cell activation.  相似文献   

7.
PRMT5 is a type II protein arginine methyltranferase that catalyzes monomethylation and symmetric dimethylation of arginine residues. PRMT5 is functionally involved in a variety of biological processes including embryo development and circadian clock regulation. However, the role of PRMT5 in oligodendrocyte differentiation and central nervous system myelination is unknown. Here we show that PRMT5 expression gradually increases throughout postnatal brain development, coinciding with the period of active myelination. PRMT5 expression was observed in neurons, astrocytes, and oligodendrocytes. siRNA-mediated depletion of PRMT5 in mouse primary oligodendrocyte progenitor cells abrogated oligodendrocyte differentiation. In addition, the PRMT5-depleted oligodendrocyte progenitor and C6 glioma cells expressed high levels of the inhibitors of differentiation/DNA binding, Id2 and Id4, known repressors of glial cell differentiation. We observed that CpG-rich islands within the Id2 and Id4 genes were bound by PRMT5 and were hypomethylated in PRMT5-deficient cells, suggesting that PRMT5 plays a role in gene silencing during glial cell differentiation. Our findings define a role of PRMT5 in glial cell differentiation and link PRMT5 to epigenetic changes during oligodendrocyte differentiation.  相似文献   

8.
To investigate the role of peroxisome proliferator-activated receptors (PPARs) alpha and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPARalpha levels only changed with culturing post confluence, PPARbeta levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48h. Again a very different expression pattern was observed with PPARalpha increasing after 4h and remaining elevated, while PPARbeta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPARalpha levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPARbeta are more closely associated with differentiation.  相似文献   

9.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

10.
11.
The identification of small molecule ligands for the peroxisome proliferator-activated receptors (PPARs) has been instrumental in elucidating their biological roles. In particular, agonists have been the focus of much of the research in the field with relatively few antagonists being described and all of those being selective for PPARalpha or PPARgamma. The comparison of these agonist and antagonist ligands in cellular and animal systems has often led to surprising results and new insights into the biology of the PPARs. The PPARbeta/delta receptor is emerging as an important regulator of energy metabolism, inflammation, and cell growth and differentiation; however, only agonist ligands have been described for this receptor thus far. Here we describe the first report of a PPARbeta/delta small molecule antagonist ligand. This antagonist ligand will be a useful tool for elucidating the biological roles of PPARbeta/delta.  相似文献   

12.
13.
Although widely studied in mammals, little information about fish peroxisome proliferator activated receptors (PPARs) is yet available. As a baseline for future studies, the three PPAR isotypes were identified in brown trout (Salmo trutta f. fario) and their organ distribution pattern was established. The cDNA fragments encoding PPARs alpha, beta and gamma were amplified by PCR, and the deduced sequences of the correspondent peptides were compared with other species sequences. Both the 183 amino acid sequence from PPARalpha and the 103 amino acid sequence from PPARbeta shared high levels of homology with the correspondent peptides of other fishes and terrestrial vertebrates, whereas PPARgamma 108 amino acid sequence showed much less similarity with non-fish PPARgamma. According to both semi-quantitative RT-PCR and real-time RT-PCR, PPARalpha mRNA predominates in white muscle, heart and liver and PPARbeta is more expressed in testis, heart, liver, white muscle and trunk kidney. PPARgamma was only detected in trunk kidney and liver by real-time RT-PCR and also in spleen by semi-quantitative RT-PCR. PPARbeta seems to be the most strongly expressed isotype, whereas PPARgamma shows a much weaker global expression.  相似文献   

14.
Cyclooxygenase-2 (COX-2) expression is up-regulated in colorectal cancer tissue. Peroxisome proliferator-activated receptors (PPARs) are expressed in human colorectal tissue and activation of PPARs can alter COX-2 expression. In macrophages, activation of PPARs down-regulates COX-2 expression. We examined the effect of PPARalpha and PPARgamma ligands on untreated and TNF-alpha-induced COX-2 expression in the human colorectal epithelial cell line HT-29. The expression of PPARalpha and PPARgamma was confirmed in these cells. TNF-alpha, an inflammatory cytokine, increased COX-2 expression via the NFkappaB pathway. In the absence of TNF-alpha, WY14643 (PPARalpha activator) caused an increase, while BRL49653 (PPARgamma activator) did not alter COX-2 expression. When HT-29 cells were incubated with TNF-alpha and WY14643, a further increase in COX-2 expression was detected. Incubation with TNF-alpha and BRL49653 caused an additional twofold increase in COX-2 expression. Our results suggest that both PPARalpha signaling and TNF-alpha signaling increase COX-2 expression by independent pathways, while PPARgamma stimulates COX-2 expression by up-regulation of the TNF-alpha pathway.  相似文献   

15.
We have developed a series of immortal human-human hybrid cell lines that express phenotypic characteristics of primary oligodendrocytes, by fusing a 6-thioguanine–resistant mutant of the human rhabdomyosarcoma RD with adult human oligodendrocytes by a lectin-enhanced polyethylene glycol procedure. Hybrids were selected in an aminopterin-containing media. In contrast to the tumor parent cells, a hybrid clone M03.13 expressed surface immunoreactivity for galactosyl cerebroside and intracellular immunoreactivity for myelin basic protein (MBP), proteolipid protein (PLP), and glial fibrillary acidic protein (GFAP). Serum deprivation or chronic treatment with a protein kinase C activator 4-β-phorbol 12-myristate 13-acetate (PMA), but not dibutyl cyclic adenosine monophosphate induced coordinate up-regulation or de novo induction of oligodendrocyte phenotypic markers with concomitant down-regulation of GFAP expression. Consistent with immunohistochemical studies, northern blot analysis demonstrated that both MBP and PLP mRNA were up-regulated in MO3.13 cells by PMA treatment. M03.13 cells provide an immortalized clonal model system suitable for study of gene expression subserving oligodendrocyte and astrocyte phenotypes. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Recent evidence indicates that both leptin and eicosapentaenoic acids (EPA) improve insulin sensitivity. In the present study, we examined the effect of EPA on endogenous leptin expression in 3T3-L1 adipocytes to clarify whether the EPA's effect is exerted through leptin expression. EPA caused a time- and dose-dependent increase of leptin mRNA levels in 3T3-L1 adipocytes. Leptin mRNA expression was significantly increased up to 309.4 +/- 17.0% of the control by 24 h (P < 0.01; n = 6). Leptin secretion was also significantly increased up to 193.3 +/- 12.1% of the control by 24 h (P < 0.01; n = 6). EPA is a ligand for peroxisome proliferator-activated receptors (PPARs) with the highest affinity to PPARalpha. We examined the effect on leptin expression of clofibrate, a ligand for PPARalpha, bezafibrate, for PPARbeta, or troglitazone, for PPARgamma, to clarify whether these ligands for PPARs could mimic EPA-induced stimulation of leptin expression. Neither clofibrate nor bezafibrate affected leptin mRNA expression, whereas troglitazone significantly suppressed leptin mRNA expression. On the other hand, inhibition by 6-diazo-5-oxo-l-norleucine of the rate-limiting enzyme in hexosamine biosynthesis blunted EPA-induced stimulation of leptin mRNA expression and its secretion. These data suggest that EPA up-regulates leptin gene expression and its secretion probably through a hexosamine biosynthetic pathway.  相似文献   

17.
18.
Kato K  Oka Y  Park MK 《Zoological science》2008,25(5):492-502
Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.  相似文献   

19.
Steroid synthesis in rat brain cell cultures   总被引:1,自引:0,他引:1  
Primary cultures derived from neonatal rat forebrains were established and cultured for several weeks. They grow entirely as glial cultures composed of oligodendrocytes and astrocytes. Glial cells undergo maturation and differentiation in culture. This was shown by measuring the oligodendroglial enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a specific marker for expression of oligodendrocyte differentiation. CNPase activity increased from days 10-21 of culture. Both cell types were characterized by indirect immunofluorescence staining using monoclonal antibodies to galactocerebroside (Gal C) and myelin basic protein (MBP) for oligodendrocytes, and glial fibrillary acidic protein (GFAP) for astrocytes. Using the above criteria, we measured about 60% oligodendrocytes and 40% astrocytes after 3 weeks of culture. Oligodendrocytes, expressing Gal C and MBP, were highly immunoreactive to monospecific polyclonal antibodies to the cytochrome P-450scc, enzyme involved in the synthesis of pregnenolone from cholesterol. After incubation of glial cultures with [3H]mevalonolactone in the presence of mevinoline and trilostane, biosynthesis of [3H]cholesterol, [3H]pregnenolone (P) and [3H]pregn-5-ene-3 beta, 20 alpha-diol (20-OHP) was demonstrated. Steroid biosynthesis was related to oligodendroglial differentiation, as the initial and rapid rate of increase in CNPase activity was found to occur at the same time as the onset of steroid synthesis. Both reached a maximum at 3 weeks of culture and remained stable for several weeks. Steroid synthesis was increased by dibutyryl cAMP (0.2 mM), as well as by dexamethasone (10 nM). When aminoglutethimide, a potent inhibitor of cytochrome P-450scc, was added during the incubation of cells with [3H]mevalonolactone, [3H]cholesterol accumulated in the cells. After the release of aminoglutethimide blockade, [3H]20-OHP was the major steroid produced and released in the culture medium. The demonstration of de novo steroid biosynthesis and of the cholesterol side-chain cleavage cytochrome P-450 in normal rat glial cells brings additional support to the concept of "neurosteroids".  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号