首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to establish pure blood–nerve barrier (BNB) and blood–brain barrier (BBB)‐derived pericyte cell lines of human origin and to investigate their unique properties as barrier‐forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature‐sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α‐smooth muscle actin, NG2, platelet‐derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, the inulin clearance was significantly lowered in peripheral nerve microvascular endothelial cells (PnMECs) through the up‐regulation of claudin‐5 by soluble factors released from brain or peripheral nerve pericytes. In particular, bFGF secreted from peripheral nerve pericytes strengthened the barrier function of the BNB by increasing the expression of claudin‐5. Peripheral nerve pericytes may regulate the barrier function of the BNB, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function. Furthermore, these cell lines expressed several neurotrophic factors such as NGF, BDNF, and GDNF. The secretion of these growth factors from peripheral nerve pericytes might facilitate axonal regeneration in peripheral neuropathy. Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration. J. Cell. Physiol. 226: 255–266, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The blood-nerve barrier (BNB) is a highly specialized unit that maintains the microenvironments of the peripheral nervous system. Since the breakdown of the BNB has been considered a key step in autoimmune neuropathies such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyraduculoneuropathy, it is important to understand the cellular properties of the peripheral nerve microvascular endothelial cells (PnMECs) which constitute the BNB. For this purpose, we established an immortalized cell line derived from human PnMECs. The human PnMECs were transduced with retroviral vectors encoding the temperature-sensitive SV40 large T antigen and human telomerase. This cell line, termed FH-BNB, showed a spindle fiber-shaped morphology, expression of von Willebrand factor and uptake of acetylated low density lipoprotein. These cells expressed tight junction proteins including occludin, claudin-5, ZO-1 and ZO-2 at the cell-cell boundaries. P-glycoprotein and GLUT-1 were also detected by a Western blot analysis and the cells exhibited the functional expression of p-glycoprotein. In addition, transendothelial electrical resistance experiments and paracellular permeabilities of sodium fluorescein and fluorescein isothiocyanate-labeled dextran of molecular weight 4 kDa across these cells demonstrated that FH-BNBs had functional tight junctions. These results indicated that FH-BNBs had highly specialized barrier properties and they might therefore be a useful tool to analyze the pathophysiology of various neuropathies.  相似文献   

3.
The destruction of blood–brain barrier (BBB) and blood-nerve barrier (BNB) has been considered to be a key step in the disease process of a number of neurological disorders including cerebral ischemia, Alzheimer’s disease, multiple sclerosis, and diabetic neuropathy. Although glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) facilitate neuronal or axonal regeneration in the brain or peripheral nerves, their action in the BBB and BNB remains unclear. The purpose of the present study was to elucidate whether these neurotrophic factors secreted from the brain or peripheral nerve pericytes increase the barrier function of the BBB or BNB, using our newly established human brain microvascular endothelial cell (BMEC) line or peripheral nerve microvascular endothelial cell (PnMEC) line. GDNF increased the expression of claudin-5 and the transendothelial electrical resistance (TEER) of BMECs and PnMECs, whereas BDNF did not have this effect. Furthermore, we herein demonstrate that the GDNF secreted from the brain and peripheral nerve pericytes was one of the key molecules responsible for the up-regulation of claudin-5 expression and the TEER value in the BBB and BNB. These results indicate that the regulation of GDNF secreted from pericytes may therefore be a novel therapeutic strategy to modify the BBB or BNB functions and promote brain or peripheral nerve regeneration.  相似文献   

4.
In autoimmune disorders of the peripheral nervous system (PNS) such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered as a key step in the disease process. Hence, it is important to know the cellular property of peripheral nerve microvascular endothelial cells (PnMECs) constituting the bulk of BNB. Although many in vitro models of the blood-brain barrier (BBB) have been established, very few in vitro BNB models have been reported so far. We isolated PnMECs from transgenic rats harboring the temperature-sensitive SV40 large T-antigen gene (tsA58 rat) and investigated the properties of these "barrier-forming cells". Isolated PnMECs (TR-BNBs) showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Furthermore, we confirmed the in vivo expression of various BBB-forming endothelial cell markers in the endoneurium of a rat sciatic nerve. These results suggest that PnMECs constituting the bulk of BNB have a highly specialized characteristic resembling the endothelial cells forming BBB.  相似文献   

5.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

6.
In peripheral nerves, groups of Schwann cell-axon units are isolated from the adjacent tissues by the perineurium, which creates a diffusion barrier responsible for the maintenance of endoneurial homeostasis. The perineurium is formed by concentric layers of overlapping, polygonal perineurial cells that form tight junctions at their interdigitating cell borders. In this study, employing indirect immunofluorescence and immunoelectron microscopy, we demonstrate that claudin-1 and -3, ZO-1, and occludin, but not claudin-2, -4, and -5, are expressed in the perineurium of adult human peripheral nerve. We also describe the expression of occludin, ZO-1, claudin-1, -3, and -5 in the developing human perineurium, showing that the expressions of claudin-1 and -3, ZO-1, and occludin follow similar spatial developmental expression patterns but follow different timetables in achieving their respective adult distributions. Specifically, claudin-1 is already largely restricted to perineurium-derived structures at 11 fetal weeks, whereas claudin-3 and occludin are weakly expressed in the perineurial structures at this age and acquire a well-defined perineurial distribution only between 22 and 35 fetal weeks. ZO-1 appears to acquire its mature profile even later during the third trimester. The results of the present and previous studies show that the perineurial diffusion barrier matures relatively late during human peripheral nerve development.  相似文献   

7.
In autoimmune disorders of the peripheral nervous system (PNS), including Guillain–Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered to be a key step in the disease process. Although glucocorticoids (GCs) have been shown to effectively restore the blood–brain barrier (BBB) in some inflammatory central nervous system diseases such as multiple sclerosis, their action against the BNB has not yet been examined. To elucidate the role of GCs on the BNB, we established a novel human immortalized endothelial cell lines derived from the BNB. The established cell line termed “DH-BNBs” expresses two important tight junction proteins, claudin-5 and occludin. Using DH-BNBs, we analyzed how GCs affect BNB function. We herein report that GCs up-regulate the expression of claudin-5 and increase the barrier properties of the BNB. This is the first report which indicates how GCs affect the blood-nerve barrier.  相似文献   

8.
The purpose of this study was to establish and characterize a retinal pericyte cell line from retinal capillaries of transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), and to apply this to the co-culture with a retinal capillary endothelial cell line. The conditionally immortalized rat retinal pericyte cell lines (TR-rPCTs), which express a temperature-sensitive large T-antigen, were obtained from two tsA58 Tg rats. These cell lines had a multicellular nodule morphology and reacted positively with von Kossa staining, a marker of calcification. TR-rPCTs cells expressed mRNA of pericyte markers such as rat intercellular adhesion molecule-1, platelet-derived growth factor-receptor beta, angiopoietin-1, and osteopontin. Western blot analysis indicated that alpha-smooth muscle actin (alpha-SMA) was expressed in TR-rPCT3 and 4 cells. In contrast, alpha-SMA was induced by transforming growth factor-beta1 and its enhancement was reduced by basic fibroblast growth factor in TR-rPCT1 and 2 cells. When TR-rPCT1 cells were cultured with a rat retinal endothelial cell line (TR-iBRB2) in a contact co-culture system, the number of TR-iBRB2 cells were significantly reduced in comparison with that of a single culture of TR-iBRB2 cells, suggesting that physical contact between pericytes and retinal endothelial cells is important for the growth of retinal endothelial cells. In conclusion, conditionally immortalized retinal pericyte cell lines were established from tsA58 Tg rats. These cell lines exhibited the properties of retinal pericytes and can be applied in co-culture systems with a retinal capillary endothelial cell line.  相似文献   

9.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

10.
The CTX family is a growing group of type I transmembrane proteins within the immunoglobulin superfamily (IgSF). They localize to junctional complexes between endothelial and epithelial cells and seem to participate in cell-cell adhesion and transmigration of leukocytes. Here, we report the identification of a new member of the CTX family. This protein, which was designated CLMP (coxsackie- and adenovirus receptor-like membrane protein), is composed of 373 amino acids including an extracellular part containing a V- and a C2-type domain, a transmembrane region and a cytoplasmic tail. CLMP mRNA was detected in a variety of both human and mouse tissues and cell lines. The protein migrated with an Mr of around 48 on SDS-PAGE and was predominantly expressed in epithelial cells within different tissues. In cultured epithelial cells, CLMP was detected in areas of cell-cell contacts. When exogenously expressed in polarized MDCK cells, CLMP was restricted to the subapical area of the lateral cell surface, where it co-localized with the tight junction markers ZO-1 and occludin. Also endogenous CLMP showed association with tight junctions, as analyzed in polarized human CACO-2 cells. This suggested a role for CLMP in cell-cell adhesion and indeed, overexpressed CLMP induced aggregation of non-polarized CHO cells. Furthermore, CLMP-expressing MDCK cells showed significantly increased transepithelial resistance, indicating a role for CLMP in junctional barrier function. Thus, we conclude that CLMP is a novel cell-cell adhesion molecule and a new component of epithelial tight junctions. We also suggest, based on phylogenetic studies, that CLMP, CAR, ESAM, and BT-IgSF form a new group of proteins within the CTX family.  相似文献   

11.
Although tight-junctions (TJs) at the blood-brain barrier (BBB) are important to prevent non-specific entry of compounds into the CNS, molecular mechanisms regulating TJ maintenance remain still unclear. The purpose of this study was therefore to identify molecules, which regulate occludin expression, derived from astrocytes and pericytes that ensheathe brain microvessels by using conditionally immortalized adult rat brain capillary endothelial (TR-BBB13), type II astrocyte (TR-AST4) and brain pericyte (TR-PCT1) cell lines. Transfilter co-culture with TR-AST4 cells, and exposure to conditioned medium of TR-AST4 cells (AST-CM) or TR-PCT1 cells (PCT-CM) increased occludin mRNA in TR-BBB13 cells. PCT-CM-induced occludin up-regulation was significantly inhibited by an angiopoietin-1-neutralizing antibody, whereas the up-regulation by AST-CM was not. Immunoprecipitation and western blot analyses confirmed that multimeric angiopoietin-1 is secreted from TR-PCT1 cells, and induces occludin mRNA, acting through tyrosine phosphorylation of Tie-2 in TR-BBB13 cells. A fractionated AST-CM study revealed that factors in the molecular weight range of 30-100 kDa led to occludin induction. Conversely, occludin mRNA was reduced by transforming growth factor beta 1, the mRNA of which was up-regulated in TR-AST4 cells following hypoxic treatment. In conclusion, in vitro BBB model studies revealed that the pericyte-derived multimeric angiopoietin-1/Tie-2 pathway induces occludin expression.  相似文献   

12.
Occludin is a major membrane component of tight junctions of endothelial cells, though the role of this molecule is not fully understood. RLE cells, derived from rat lung endothelial cells, express a negligible level of occludin with clear expression of E-cadherin and ZO-1 at cell junctions. Introduction of occludin by transfection induced clear junctional expression of occludin with few or no changes of expression of E-cadherin and ZO-1. The paracellular barrier function, as determined by transelectrical resistance and flux of non-ionic small molecules, was not detectably upregulated. When cells expressing occludin were cocultured with RLE cells null for occludin, clear junctional expression of occludin was observed irrespective of the expression of occludin on the apposing cells. Cortical actin was developed at the site of these occludin positive cell junctions. Treatment of cells with an actin depolymerizing agent, mycalolide B, abolished junctional expression of occludin together with E-cadherin and circumferential actin. ZO-1 showed relative resistance to this actin depolymerizing treatment and was maintained at the cell junctions, though fragmentation of immunoreactivity was detectable. Collectively, junctional expression of occludin was not associated with paracellular barrier function in this cell line. There was, however, a close correlation of occludin with the actin cytoskeleton, indicating a role of occludin as an important molecule in the regulation of the actin cytoskeleton in endothelial cells.  相似文献   

13.
Tight junctions between brain microvessel endothelial cells (BMECs) maintain the blood-brain barrier. Barrier breakdown is associated with brain tumors and central nervous system diseases. Tumor cell-secreted vascular endothelial growth factor (VEGF) increases microvasculature permeability in vivo and is correlated with the induction of clinically severe brain tumor edema. Here we investigated the permeability-increasing effect and tight junction formation of VEGF. By measuring [(14)C]sucrose flux and transendothelial electrical resistance (TER) across BMEC monolayer cultures, we found that VEGF increased sucrose permeability and decreased TER. VEGF also caused a loss of occludin and ZO-1 from the endothelial cell junctions and changed the staining pattern of the cell boundary. Western blot analysis of BMEC lysates revealed that the level of occludin but not of ZO-1 was lowered by VEGF treatment. These results suggest that VEGF increases BMEC monolayer permeability by reducing occludin expression and disrupting ZO-1 and occludin organization, which leads to tight junction disassembly. Occludin and ZO-1 appear to be downstream effectors of the VEGF signaling pathway.  相似文献   

14.
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.  相似文献   

15.
Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1-containing cell-cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.  相似文献   

16.
Jo  Dong Hyun  Kim  Jin Hyoung  Heo  Jong-Ik  Kim  Jeong Hun  Cho  Chung-Hyun 《Molecules and cells》2013,36(5):465-471
The hyaloid vessel is a transient vascular network that nourishes the lens and the primary vitreous in the early developmental periods. In hyaloid vessels devoid of the support of astrocytes, we demonstrate that tight junction proteins, zonula occludens-1 and occludin, are regularly expressed at the junction of endothelial cells. To figure out the factor influencing the formation of tight junctions in hyaloid vessels, we further progress to investigate the interactions between endothelial cells and pericytes, two representative constituent cells in hyaloid vessels. Interestingly, endothelial cells interact with pericytes in the early postnatal periods and the interaction between two cell types provokes the up-regulation of transforming growth factor β1. Further in vitro experiments demonstrate that transforming growth factor β1 induces the activation of Smad2 and Smad3 and the formation of tight junction proteins. Taken together, in hyaloid vessels, pericytes seem to regulate the formation of tight junctions by the interaction with endothelial cells even without the support of astrocytes. Additionally, we suggest that the hyaloid vessel is a valuable system that can be utilized for the investigation of cell-cell interaction in the formation of tight junctions in developing vasculatures.  相似文献   

17.
Quantitative immunogold procedure was used to study the distribution of molecular components of interendothelial junctions in blood–brain barrier (BBB) microvessels of scrapie infected SJL/J hyperglycemic mice showing obesity and reduced glucose tolerance. Samples of brain (fronto-parietal cerebral cortex and thalamo-hypothalamic region) obtained from hyperglycemic (diabetic) mice and from non- infected, normoglycemic (non-diabetic) SJL/J mice, were processed for immunocytochemical examination. The localization of the following tight junction (TJ)-associated proteins was studied: occludin as an integral membrane (transmembrane) protein, and zonula occludens one (ZO-1) as a peripheral protein. The localization of β-catenin as a representative of the cadherin/catenin complex that is typical for adherens junctions (AJs) also was studied. Morphometric analysis revealed that the density of immunosignals for occludin, represented by colloidal gold particles (GPs), was significantly lower in the brain microvessels of diabetic than in non-diabetic mice. No significant differences in the density of immunosignals for ZO-1 and β-catenin between both experimental mouse groups were observed. It indicates that abnormal glucose metabolism affects mostly occludin which is believed to play a fundamental role in the maintenance of the tightness of endothelial lining in brain microvascular network and thereby in the preservation of its barrier function. These results also support the previously expressed opinion that occludin, detected with the applied morphological method, can be considered a sensitive indicator of altered molecular architecture of the interendothelial junctions due to the action of some metabolic or pathological insults.  相似文献   

18.
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.  相似文献   

19.
Claudins and occludin constitute the major transmembrane proteins of tight junctions (TJs). We have previously identified the human homologue of the murine Cldn1, CLDN1 (SEMP1) that is expressed in normal, mammary gland-derived epithelial cells but is absent in most human breast cancer cell lines. To investigate the potential functions of CLDN1 protein in tumor and normal epithelial cells, we developed an I-NGFR retroviral vector and monoclonal anti-CLDN1 antibody. In subconfluent and confluent breast cancer cells, MDA-MB-435 and MDA-MB-361, endogenous CLDN1 expression was not detected by an anti-CLDN1 monoclonal antibody by Western blot analysis or quantitative RT-PCR. When CLDN1-negative breast cancer cell lines were transduced with a CLDN1 retrovirus the cells express CLDN1 mRNA constitutively as shown by quantitative RT-PCR. Immunofluorescence analyses of the CLDN1 retroviral transduced breast tumor cells using monoclonal antibodies against CLDN1 reveals a subcellular distribution at cell-cell contact sites similar to the CLDN1 homing pattern in T47-D cells, which express endogenous CLDN1. This cell-cell contact co-localization of CLDN1 was evident in CLDN1-transduced breast tumor cells which fail to express occludin protein (MDA-MB-361 and MDA-MB-435) and express relatively little ZO-1 protein (MDA-MB-435), suggesting that other proteins may be responsible for targeting of CLDN1 to cell-cell contact sites. The re-expression of CLDN1 decreases the paracellular flux of 3 and 40 kDa dextran despite the absence of occludin in the MDA-MB-361 tumor cells. Our findings indicate that in CLDN1-negative breast tumor cells, the basal protein partner requirements for physiological homing of the CLDN1 protein are intact, and that CLDN1 gene transfer and protein expression itself might be sufficient to exert a TJ-mediate gate function in metastatic tumor cells even in the absence of other TJ-associated proteins, such as occludin.  相似文献   

20.
Though the compromised blood-brain barrier (BBB) is a pathological hallmark of Japanese encephalitis-associated neurological sequelae, the underlying mechanisms and the specific cell types involved are not understood. BBB characteristics are induced and maintained by cross talk between brain microvascular endothelial cells and neighboring elements of the neurovascular unit. In this study, we show a potential mechanism of disruption of endothelial barrier integrity during the course of Japanese encephalitis virus (JEV) infection through the activation of neighboring pericytes. We found that cultured brain pericytes were susceptible to JEV infection but were without signs of remarkable cytotoxicity. JEV-infected pericytes were found to release biologically active molecules which activated ubiquitin proteasome, degraded zonula occludens-1 (ZO-1), and disrupted endothelial barrier integrity in cultured brain microvascular endothelial cells. Infection of pericytes with JEV was found to elicit elevated production of interleukin-6 (IL-6), which contributed to the aforementioned endothelial changes. We further demonstrated that ubiquitin-protein ligase E3 component n-recognin-1 (Ubr 1) was a key upstream regulator which caused proteasomal degradation of ZO-1 downstream of IL-6 signaling. During JEV central nervous system trafficking, endothelial cells rather than pericytes are directly exposed to cell-free viruses in the peripheral bloodstream. Therefore, the results of this study suggest that subsequent to primary infection of endothelial cells, JEV infection of pericytes might contribute to the initiation and/or augmentation of Japanese encephalitis-associated BBB breakdown in concerted action with other unidentified barrier disrupting factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号