首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human thymus adenosine deaminase was isolated by using a monoclonal antibody affinity column. The highly purified enzyme produced by this rapid, efficient procedure had a molecular weight of 44,000. Quenching of the intrinsic protein fluorescence by small molecules was used to probe the accessibility of tryptophan residues in the enzyme and enzyme-inhibitor complexes. The fluorescence emission spectrum of human adenosine deaminase at 295-nm excitation had a maximum at about 335 nm and a quantum yield of 0.03. Addition of polar fluorescence quenchers, iodide and acrylamide, shifted the peak to the blue, and the hydrophobic quencher trichloroethanol shifted the peak to the red, indicating that the emission spectrum is heterogeneous. The fluorescence quenching parameters obtained for these quenchers reveal that the tryptophan environments in the protein are relatively hydrophobic. Binding of both ground-state and transition-state analogue inhibitors caused decreases in the fluorescence intensity of the enzyme, suggesting that one or more tryptophans may be near the active site. The kinetics of the fluorescence decrease were consistent with a slow conformational alteration in the transition-state inhibitor complexes. Fluorescence quenching experiments using polar and nonpolar quenchers were also carried out for the enzyme-inhibitor complexes. The quenching parameters for all enzyme-inhibitor complexes differed from those for the uncomplexed enzyme, suggesting that inhibitor binding causes changes in the conformation of adenosine deaminase. For comparison, parallel quenching studies were performed for calf adenosine deaminase in the absence and presence of inhibitors. While significant structural differences between adenosine deaminase from the two sources were evident, our data indicate that both enzymes undergo conformational changes on binding ground-state and transition-state inhibitors.  相似文献   

2.
The interaction of adenosine deaminase (adenosine aminohydrolase, ADA) from bovine spleen with inhibitors— erythro-9-(2-hydroxy-3-nonyl)adenine, erythro-9-(2-hydroxy-3-nonyl)-3-deazaadenine, and 1-deazaadenosine—was investigated. Using selective chemical modification by diethyl pyrocarbonate (DEP), the possible involvement of His residues in this interaction was studied. The graphical method of Tsou indicates that of six His residues modified in the presence of DEP, only one is essential for ADA activity. Inactivation of the enzyme, though with low rate, in complex with any of the inhibitors suggests that the adenine moiety of the inhibitors (and consequently, of the substrate) does not bind with the essential His to prevent its modification. The absence of noticeable changes in the dissociation constants of any of the enzyme–inhibitor complexes for the DEP-modified and control enzyme indicates that at least the most available His residues modified in our experiments do not participate in binding the inhibitors—derivatives of adenosine or erythro-9-(2-hydroxy-3-nonyl)adenine.  相似文献   

3.
Adenosine deaminase isoenzyme 2 (ADA2) was isolated from human pleural fluid for the first time. Molecular and kinetic properties were characterized. It was shown that the inhibitors of adenosine deaminase isoenzyme 1 (ADA1), adenosine, and erithro-9-(2-hydroxy-3-nonyl)adenine (EHNA) derivatives are poor inhibitors of ADA2. Comparison of the interaction of ADA2 and ADA1 with adenosine and its derivative, 1-deazaadenosine, indicates that the isoenzymes have similar active centers. The absence of ADA2 inhibition by EHNA is evidence of a difference of these active centers in a close environment. The possible role of Zn2+ ions and the participation of acidic amino acids Glu and Asp in adenosine deamination catalyzed by ADA2 were shown.  相似文献   

4.
The uptake of adenosine by an adenosine kinase deficient variant of C1300 murine neuroblastoma cells has been studied in the absence and in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine, a potent adenine deaminase inhibitor. Although 100 micro M inhibitor completely blocks the metabolism of adenosine under the conditions studied, the uptake of adenosine is concentrative, i.e., the intracellular adenosine concentration exceeds the extracellular concentration. This concentrative effect decreases as the concentration of adenosine increases and is hypothesized to be due to the binding of adenosine to an intracellular component. Despite this concentrative effect, we believe that the kinetics of uptake, as determined in experiments with short (10-20 s) uptake periods, reflect the kinetics of adenosine transport by a facilitated diffusion process. This nucleoside transport system appears to be nonspecific in that the transport of adenosine is competitively antagonized by thymidine. It does not appear to be necessary to inhibit adenosine deaminase in order to study transport in these cells as the Km for transport is not affected by the presence of erythro-9-(2-hydroxy-3-nonyl)adenine. However, erythro-9-(2-hydroxy-3-nonyl)adenine does depress the V for transport. This effect of the inhibitor is probably not due to the inhibition of adenosine deaminase as the transport of thymidine is similarly affected.  相似文献   

5.
Adenosine deaminase, a purine salvage enzyme essential for immune competence, was studied by time-resolved fluorescence spectroscopy. The heterogeneous emission from this four-tryptophan protein was separated into three lifetime components: tau 1 = 1 ns and tau 2 = 2.2 ns an emission maximum at about 330 nm and tau 3 = 6.3 ns with emission maximum at about 340 nm. Solvent accessibility of the tryptophan emission was probed with polar and nonpolar fluorescence quenchers. Acrylamide, iodide, and trichloroethanol quenched emission from all three components. Acrylamide quenching caused a blue shift in the decay-associated spectrum of component 3. The ground-state analogue enzyme inhibitor purine riboside quenched emission associated with component 2 whereas the transition-state analogue inhibitor deoxycoformycin quenched emission from both components 2 and 3. The quenching due to inhibitor binding had no effect on the lifetimes or emission maxima of the decay-associated spectra. These observations can be explained by a simple model of four tryptophan environments. Quenching studies of the enzyme-inhibitor complexes indicate that adenosine deaminase undergoes different protein conformation changes upon binding of ground- and transition-state analogue inhibitors. The results are consistent with localized structural alterations in the enzyme.  相似文献   

6.
L C Kurz  D LaZard  C Frieden 《Biochemistry》1985,24(6):1342-1346
The accessibility of protein tryptophan fluorescence to the quenching agent acrylamide has been studied in adenosine deaminase and in binary complexes of the enzyme with ground-state or transition-state analogues. Although the enzyme contains three tryptophan residues, Stern-Volmer plots are linear with all the fluorescence quenchable at high acrylamide concentrations. Tryptophan fluorescence is less easily quenched in the binary complexes than in the free enzyme, indicating a decrease in the accessibility of these residues. The greatest decrease in accessibility is found for the transition-state analogue complexes. Although the affinities of the transition-state analogues studied span a range of 10(6), the Stern-Volmer constants of the complexes are the same within experimental error. Thus, as measured by this technique, changes in enzyme conformation accompanying formation of these complexes are similar for all transition-state analogues. Resonance energy transfer from tryptophan as donor to ligand as acceptor successfully explains the differing abilities of ligands to quench the enzyme's intrinsic fluorescence upon formation of complexes in the absence of acrylamide. On the basis of Forster distance calculations, it is likely that the residues partially quenched upon formation of transition-state analogue complexes are distant from the active site.  相似文献   

7.
The fluorescence behaviour of human orosomucoid was investigated. The intrinsic fluorescence was more accessible to acrylamide than to the slightly larger succinimide, indicating limited accessibility to part of the tryptophan population. Although I- showed almost no quenching, that of Cs+ was enhanced, and suggested a region of negative charge proximal to an emitting tryptophan residue. Removal of more than 90% of sialic acid from the glycan chains led to no change in the Cs+, I-, succinimide or acrylamide quenching, indicating that the negatively charged region originates with the protein core. Quenching as a function of pH and temperature supported this view. The binding of chlorpromazine monitored by fluorescence quenching, in the presence and in the absence of the small quenching probes (above), led to a model of its binding domain on orosomucoid that includes two tryptophan residues relatively shielded from the bulk solvent, with the third tryptophan residue being on the periphery of the domain, or affected allotopically and near the negatively charged field.  相似文献   

8.
9.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Adenosine deaminase from bovine cerebral hemisphere (white and gray matter) and spleen was treated with N-bromosuccinimide, a reagent known to oxidize selectively tryptophan residues in proteins. Spectrally observable tryptophan modification was accompanied by enzyme inactivation. Tsow graphics revealed that two Trps are essential for the activity of enzyme from both tissues. Enzyme inhibitors and substrate analogues, derivatives of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and adenosine, were able to protect Trp against modification, and this effect correlated in general with the enzyme activity protection. In the presence of adenosine deaza analogues (the noninhibitor tubercidin among them) only two Trps were modified in the fully inactivated enzyme. In the presence of EHNA and its deaza analogues, full inactivation of the enzyme was accompanied by the modification of four Trps. The obtained data confirm the previous hypothesis about the presence on the enzyme of different binding sites for adenosine and EHNA derivatives that are responsible for the different effects on the enzyme conformation elicited by the corresponding derivatives. Moreover, these data allow us to suggest that Trp residues, still unidentified by X-ray analysis, are essential for the functioning of the enzyme.  相似文献   

11.
Bovine brain adenosine deaminase cytoplasmatic form was purified about 450 fold by salt fractionation, column chromatography on DEAE-cellulose, octyl-sepharose 4B and affinity chromatography on CH-sepharose 4B 9-(p-aminobenzyl)adenine. The purified enzyme was homogeneous on disc gel electrophoresis; the enzyme had a molecular mass of about 65 kDa with an isoelectric point at pH 4.87. The Km values for adenosine and 2'-deoxyadenosine were 4 x 10(-5) and 5.2 x 10(-5) M, respectively. The enzyme showed a great stability to temperature with a half life of 15 hours at 53 degrees C significantly different compared to that known for other mammalian forms of this enzyme. Aza and deaza analogs of adenosine and erythro-9-(2-hydroxy-3-nonyl) adenine were good inhibitors of the bovine brain enzyme with little difference with respect to those reported for the adenosine deaminases purified from other sources. Kinetic constants for the association and dissociation of coformycin and 2'-deoxycoformycin with the bovine brain adenosine deaminase are reported.  相似文献   

12.
The fluorescent and phosphorescent properties of NADPH-adrenodoxin reductase were investigated. It was shown that the fluorescence of protein tryptophanyls was quenched completely by acrylamide and partially by ionic quenchers (I- and Cs+). A removal of the prosthetic group from the protein causes insignificant changes in fluorescent properties of the enzyme. The denaturation of the enzyme by urea was accompanied by growth of quenching parameters. Indeed, some differences were observed in the quenching of flavin fluorescence by ionic quenchers (I- and Cs+). NADPH appeared to be an efficient quencher of NADPH-adrenodoxin reductase tryptophan fluorescence. Using F?rster's equations for non-radiative energy transfer, the distance between NADPH-binding site and tryptophanyls was evaluated to 35-40 A.  相似文献   

13.
The uncoupling protein from brown adipose tissue is a member of the family of metabolite carriers of the mitochondrial inner membrane. It contains two tryptophan residues which have been characterized by fluorescence spectroscopy. Application of fluorescence-quenching-resolved spectroscopy (FQRS) allowed the determination of the emission maximum for each residue, both of which occur at 332 nm, thus suggesting that they are both located in a non-polar environment. Fluorescence quenching has demonstrated that both residues are accessible to acrylamide and inaccessible to Cs+, while only one of them is accessible to I-. When FQRS is combined with guanidinium hydrochloride denaturation, the unfolding of the regions containing each tryptophan can be monitored separately as they are transferred to the polar medium where the emission maximum appears at 359 nm, revealing also that the iodide-accessible residue is more sensitive to the denaturant. Secondary structure predictions, together with the data presented here, suggest that the iodide-accessible residue could correspond to Trp173 and the denaturant-resistant iodide-inaccessible one to Trp280, located in the center of the sixth transmembrane alpha-helix. Interaction of the protein with GDP (a transport inhibitor) has been studied and has revealed that it partially shields Trp173 from the interaction with I-, as well as reducing the static component of the acrylamide quenching.  相似文献   

14.
The intrinsic fluorescence of the exonuclease isolated from Crotalus adamanteus venom, was studied. The position of its maximum at 335 nm and half-width of the emission band 55 nm (lambda exc. 295 nm) suggested the existence of at least two types of tryptophan residues in the enzyme molecule. Differential analysis of the fluorescence spectra obtained by excitation at 280 and 295 nm revealed about 12.5% contribution of the tyrosine fluorescence in the overall emission excited at 280 nm. The environment of the tryptophan residues in the exonuclease was studied by quenching of their fluorescence with various ionic (NO3-, NO2-, I-, Br- and Cs+) and non-ionic agents (acrylamide, chloroform-methanol). On this basis, fractions of inner (non-polar) and surface tryptophan residues located in charged and neutral regions of the enzyme molecule were evaluated. More than half of the residues (60%) was found in the inner part of the exonuclease while most of its surface tryptophans--in a neutral region(s).  相似文献   

15.
Human malaria infected erythrocytes show a dramatic increase in adenosine deaminase activity in vitro. Using recently developed culture techniques, adenosine deaminase-deficient human erythrocytes were infected in vitro with the major human pathogen Plasmodium falciparum. Adenosine deaminase activity was undetectable in the uninfected host red cells, but increased by 2-fold over normal levels in these cells with an 8% parasitemia. The enzyme in these cells appeared unique in that its activity was markedly elevated over that of other parasite purine enzymes, was not cross-reactive with antibody against human erythrocyte adenosine deaminase, and though inhibited competitively by deoxycoformycin was relatively insensitive to erythro-9-(2-hydroxy-3-nonyl) adenine. The use of adenosine deaminase-deficient erythrocytes for the in vitro cultivation of Plasmodium provides a unique system for the study of parasite enzyme and allows further insight into the purine metabolism of the intraerythrocytic malaria parasite.  相似文献   

16.
The release and metabolism of adenosine was examined using rat fat cells in which the nucleotide pool has been labeled by incubation with radioactive adenine. The accumulation of adenosine in the medium was near maximal at the start of the incubation and increased only slightly thereafter. Adenosine was rapidly deaminated to inosine and subsequently oxidized to uric acid. In the presence of allopurinol, and inhibitor of xanthine dehydrogenase, hypoxanthine accumulated in the medium as the end-product of adenosine catabolism. Adenosine accumulated in the medium only if fat cells were incubated in the presence of erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. Even in the presence of this inhibitor there was no acceleration of adenosine release by norepinephrine in the presence of theophylline. However, there was an increase in labeled intracellular AMP accumulation by norepinephrine plus theophylline. The increase in labeled AMP correlated with the final free fatty acid to albumin ratio suggesting that the rise in AMP was related to an accumulation of intracellular free fatty acids. The addition of sodium oleate to the medium mimicked the effect of norepinephrine plus theophylline on the accumulation of labeled AMP. These results indicate that AMP rather than adenosine accumulates in isolated fat cells during incubation with lipolytic agents.  相似文献   

17.
Binding of [3H]flunitrazepam to benzodiazepine receptors in brain from several species, including human, was measured in vitro in the presence and absence of purine-metabolizing enzyme inhibitors. Incubation with potent inhibitors of either adenosine deaminase (2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)-adenine) or guanine deaminase (5-amino-4-imidazole carboxamide) failed to alter [3H]flunitrazepam binding in homogenates of several different regions of human, rabbit, rat or guinea pig brain. These findings are in contrast to those of Norstrand et al. [Enzyme 29, 61–65 (1983)] who reported substantial alterations in [3H]flunitrazepam binding to human brain membranes in the presence of erythro-9-(2-hydroxy-3-nonyl)-adenine (increase) and 5-amino-4-imidazole carboxamide (decrease). In our studies, [3H]flunitrazepam binding was also unaltered in more anatomically intact brain sections following treatment with purine enzyme inhibitors. Furthermore, in vivo administration of erythro-9-(2-hydroxy-3-nonyl)-adenine to mice at a dose (200 mg/kg, i.p.) known to almost totally inhibit central adenosine deaminase activity also failed to alter brain [3H]flunitrazepam binding measured ex vivo, 30–120 min post injection.

While previous studies have shown that purines such as inosine interact with benzodiazepine receptors, our results raise some questions about the role of endogenous purines in regulating benzodiazepine receptors, at least in vitro and also acutely vivo following purine enzyme inhibitor administration.  相似文献   


18.
R D Green 《Life sciences》1980,26(5):399-406
The cyclic AMP content of dense cultures of C1300 murine neuroblastoma cells (clone N2a) was elevated after incubation for short periods of time in minimal volumes of serum-free medium (SFM) containing Ro 20 1724, a potent nonxanthine phosphodiesterase inhibitor. This elevation was prevented by theophylline, an adenosine antagonist, and was retarded by dipyridamole or benzylthioinosine, inhibitors of nucleoside transport. Cyclic AMP was also elevated by erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), a potent adenosine deaminase inhibitor. This effect of EHNA was more pronounced in dense cultures, in small volumes of bathing medium, and was antagonized by dipyridamole. The addition of adenosine deaminase to growth medium or SFM lowered the cyclic AMP levels attained after the addition of Ro 20 1724. We conclude that N2a cells continually release adenosine into the growth or bathing medium via the nucleoside transport system and that sufficient concentrations may be achieved to tonically stimulate adenylate cyclase and influence processes controlled by the cyclic AMP:cyclic AMP-dependent protein kinase system.  相似文献   

19.
The method of fluorescence quenching was used to experimentally determine the distribution of tryptophan residues in molecules of troponin T, troponin T-troponin I complexes, and alpha-actinin. Iodide and cesium ions, and acrylamide were used as quenchers. It was shown that cesium ions decrease the fluorescence intensity of troponin T and its complex with troponin I by the mode of dynamic quenching. For alpha-actinin such a dynamic quencher is anionic iodide. By using the modified Stern-Volmer equation, the quenching was found to be about 90% of total fluorescence intensity for troponin T, approximately 70% for the troponin T-troponin I complexes, and 20% for alpha-actinin. The penetration of cesium ions to tryptophan 206 (tryptophan 204) in the troponin T-troponin I complex is hindered, probably due to the participation of this tryptophan in the formation of bonds between troponin subunits.  相似文献   

20.
Analysis of the response of baby hamster kidney cells to adenosine in the presence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine has revealed two distinct mechanisms of toxicity. The first is apparent at low concentrations of adenosine (less than 5 microM) and is dependent upon the presence of a functional adenosine kinase. The initial toxicity is abolished by uridine, is unrelated to the inhibition of ribonucleotide reductase, and is accompanied by a decrease in the size of the pyrimidine nucleotide pool. Toxicity at higher concentrations of adenosine is adenosine kinase independent and is potentiated by homocysteine thiolactone. An elevation in the intracellular level of S-adenosylhomocysteine, which was observed following treatment with higher concentrations of adenosine (greater than 10 microM), is believed to mediate toxicity at these levels. Interestingly, BHK cells were resistant to intermediate levels of adenosine. The mechanism of resistance is currently unknown, but appears unrelated to a lack of inhibition of adenosine deaminase. It is proposed that substrate inhibition of adenosine kinase may be a determinant of this property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号