首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report here that ultraviolet irradiation substantially reduced the mRNA and protein of the two major nuclear retinoid receptors, RAR-gamma and RXR-alpha, in human skin in vivo. Pre-treatment with retinoic acid mitigated this loss of nuclear retinoid receptors. Ultraviolet irradiation caused a near-total loss of retinoic acid induction of two RAR/RXR target genes, cellular retinoic acid binding protein-II and RA 4-hydroxylase, but did not affect 1,25-dihydroxyvitamin D3 induction of the vitamin D receptor/RXR-regulated gene vitamin D 24-hydroxylase. In effect, ultraviolet irradiation causes a functional vitamin A deficiency that may have deleterious effects on skin function, contributing to skin photo-aging and carcinogenesis.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The two cellular retinoic acid binding proteins, CRABP I and CRABP II, belong to a family of small cytosolic lipid binding proteins and are highly conserved during evolution. Both proteins are expressed during embryogenesis, particularly in the developing nervous system, craniofacial region and limb bud. CRABP I is also expressed in several adult tissues, however, in contrast, CRABP II expression appears to be limited to the skin. It is likely that these proteins serve as regulators in the transport and metabolism of retinoic acid in the developing embryo and throughout adult life. It has been proposed that CRABP I sequesters retinoic acid in the cytoplasm and prevents nuclear uptake of retinoic acid. A role in catabolism of retinoic acid has also been proposed. Recent gene targeting experiments have shown that neither of the two CRABPs are essential for normal embryonic development or adult life. Examination of CRABP I expression at subcellular resolution reveals a differential cytoplasmic and/or nuclear localization of the protein. A regulated nuclear uptake of CRABP I implies a role for this protein in the intracellular transport of retinoic acid. A protein mediated mechanism which controls the nuclear uptake of retinoic acid may play an important role in the transactivation of the nuclear retinoic acid receptors.  相似文献   

11.
To study mechanisms involved in the antiestrogenic effect of retinoic acid (RA), previously described in mammalian cells, we used in vitro and in vivo approaches. One hypothesis was direct competition between nuclear receptors (ER, RAR and RXR) at the DNA level. We first showed in vitro that the RAR/RXR heterodimer could weakly bind an ERE and that retinoid receptors reduced binding of ER to an ERE. We next checked whether, in yeast, direct competition between receptors that recognize the same responsive element could be monitored in a reconstituted heterologous estrogen-responsive system, by determining the expression of a reporter gene. We then co-transformed RAR and RXR in an estrogenic responsive strain. This model demonstrated that, even though RAR/RXR was able to bind an ERE, the addition of retinoic acid had no inhibitory effect on estrogen-induced responses in this yeast system, unlike in mammalian cells. Interference between these receptors should require other factors than interactions at the ERE level. This model could be used to identify mammalian factors interacting with estrogen and retinoic acid receptors which could play a role in crosstalk between these receptors.  相似文献   

12.
Branched-chain fatty acids are potent regulators of gene expression. Among them are the vitamin A-derived retinoic acids, which are involved in cell growth and differentiation, and the chlorophyll-derived phytol metabolites such as phytanic and pristanic acids, which affect catabolic lipid metabolism. Gene expression regulated by these signaling molecules is mediated by two protein families. These are, on the one hand, the intracellular lipid binding proteins, i.e. cellular retinoic acid binding protein and liver-type fatty acid binding protein, which are responsible for ligand-transport to the nucleus. On the other hand are the ligand-activated nuclear receptors, i.e. the retinoic acid receptors for retinoic acids and the peroxisome proliferator-activated receptors for the phytol metabolites. In this review, we discuss the cross-talk between the two protein families and how this cross-talk contributes to targeted signaling with branched-chain fatty acids.  相似文献   

13.
Niles RM 《Mutation research》2004,555(1-2):81-96
The Vitamin A metabolite, retinoic acid, has been shown to have chemopreventive and therapeutic activity for certain cancers such as head and neck, cervical, neuroblastoma and promyelocytic leukemia. Retinoic acid achieves these activities by inducing differentiation and/or growth arrest. A large number of studies have investigated the mechanism(s) by which retinoic acid alters the behavior of premalignant and tumor cells. Although much important data has been obtained, the exact signaling pathways required for retinoic acid to exert its biological effects remains elusive. In this review, we outline the role and function of retinoid nuclear receptors, followed by a discussion of how major signaling pathways are affected in different tumor types by retinoids. We conclude by examining the effect of retinoic acid on G1 cell cycle regulatory proteins in various tumors.  相似文献   

14.
The elaboration of the effect of retinoic acid on limb morphogenesis has prompted renewed investigation into the teratology of retinoic acid treatment, with the hope that such analysis might give insight into mechanisms of vertebrate patterning. Retinoids, their nuclear receptors and their cytoplasmic binding proteins are now known to be deployed throughout development, but the extent to which they are natural agents of morphogenesis remains obscure. The study of retinoic acid receptors may offer molecular insight into gene regulation underlying vertebrate pattern formation.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号