首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method is described to construct sets of decoy models that can be used to generate a background score distribution for protein structure comparison. The models are derived directly from the two proteins being compared and retain all the essential properties of the structures, including length, density, shape and secondary structure composition but have different folds. As each comparison involves a pair of proteins of the same length, no explicit normalisation is required to adjust for the length of the proteins being compared. This allows substructure (or domain) matches to score almost equally to the comparison of isolated domains. A normalised probability measure was derived that allows joint family/family comparison. The method was applied to some of the CASP6 models for targets with new folds.  相似文献   

2.
    
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.  相似文献   

3.
    
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically “ab initio” modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas—model refinement, accuracy estimation, and the structure of protein assemblies—have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.  相似文献   

4.
    
The accuracy of sequence-based tertiary contact predictions was assessed in a blind prediction experiment at the CASP13 meeting. After 4 years of significant improvements in prediction accuracy, another dramatic advance has taken place since CASP12 was held 2 years ago. The precision of predicting the top L/5 contacts in the free modeling category, where L is the corresponding length of the protein in residues, has exceeded 70%. As a comparison, the best-performing group at CASP12 with a 47% precision would have finished below the top 1/3 of the CASP13 groups. Extensively trained deep neural network approaches dominate the top performing algorithms, which appear to efficiently integrate information on coevolving residues and interacting fragments or possibly utilize memories of sequence similarities and sometimes can deliver accurate results even in the absence of virtually any target specific evolutionary information. If the current performance is evaluated by F-score on L contacts, it stands around 24% right now, which, despite the tremendous impact and advance in improving its utility for structure modeling, also suggests that there is much room left for further improvement.  相似文献   

5.
    
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.  相似文献   

6.
7.
    
Park H  Ko J  Joo K  Lee J  Seok C  Lee J 《Proteins》2011,79(9):2725-2734
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement.  相似文献   

8.
    
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

9.
    
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.  相似文献   

10.
A secondary structure has been predicted for the C termini of the fibrinogen β and γ chains from an aligned set of homologous protein sequences using a transparent method that extracts conformational information from patters of variation and conservation, parsing strings, and patterns of amphiphilicity. The structure is modeled to form two domains, the first having a core parallel sheet flanked on one side by at least two helices and on the other by an antiparallel amphiphilic sheet, with an additional helix connecting the two sheets. The second domain is built entirely from β strands. © 1997 Wiley-Liss, Inc.  相似文献   

11.
    
Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.  相似文献   

12.
    
Gordon M. Crippen 《Proteins》1996,26(2):167-171
To calculate the tertiary structure of a protein from its amino acid sequence, the thermodynamic approach requires a potential function of sequence and conformation that has its global minimum at the native conformation for many different proteins. Here we study the behavior of such functions for the simplest model system that still has some of the features of the protein folding problem, namely two-dimensional square lattice chain configurations involving two residue types. First we show that even the given contact potential, which by definition is used to identify the folding sequences and their unique native conformations, cannot always correctly select which sequences will fold to a given structure. Second, we demonstrate that the given contact potential is not always able to favor the native alignment of a native sequence on its own native conformation over other gapped alignments of different folding sequences onto that same conformation. Because of these shortcomings, even in this simple model system in which all conformations and all native sequences are known and determined directly by the given potential, we must reexamine our expectations for empirical potentials used for inverse folding and gapped alignment on more realistic representations of proteins. © 1996 Wiley-Liss, Inc.  相似文献   

13.
    
Lim Heo  Michael Feig 《Proteins》2020,88(5):637-642
Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine-learning based models from AlphaFold with state-of-the-art physics-based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.  相似文献   

14.
    
In recent years in silico protein structure prediction reached a level where fully automated servers can generate large pools of near‐native structures. However, the identification and further refinement of the best structures from the pool of models remain problematic. To address these issues, we have developed (i) a target‐specific selective refinement (SR) protocol; and (ii) molecular dynamics (MD) simulation based ranking (SMDR) method. In SR the all‐atom refinement of structures is accomplished via the Rosetta Relax protocol, subject to specific constraints determined by the size and complexity of the target. The best‐refined models are selected with SMDR by testing their relative stability against gradual heating through all‐atom MD simulations. Through extensive testing we have found that Mufold‐MD, our fully automated protein structure prediction server updated with the SR and SMDR modules consistently outperformed its previous versions. Proteins 2015; 83:1823–1835. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
张超  张晖  李冀新  高红 《生物信息学》2006,4(3):128-131
遗传算法源于自然界的进化规律,是一种自适应启发式概率性迭代式全局搜索算法。本文主要介绍了GA的基本原理,算法及优点;总结GA在蛋白质结构预测中建立模型和执行策略,以及多种算法相互结合预测蛋白质结构的研究进展。  相似文献   

16.
White SH 《FEBS letters》2003,555(1):116-121
Recent three-dimensional structures of helical membrane proteins present new challenges for the prediction of structure from amino acid sequence. Membrane proteins reside stably in a thermodynamic free energy minimum after release into the membrane's bilayer fabric from the translocon complex. This means that structure prediction is primarily a problem of physical chemistry. But the folding processes within the translocon must also be considered. A distilled overview of the physical principles of membrane protein stability is presented, and extended to encompass translocon-assisted folding.  相似文献   

17.
    
Protein structure refinement aims to perform a set of operations given a predicted structure to improve model quality and accuracy with respect to the native in a blind fashion. Despite the numerous computational approaches to the protein refinement problem reported in the previous three CASPs, an overwhelming majority of methods degrade models rather than improve them. We initially developed a method tested using blind predictions during CASP10 which was officially ranked in 5th place among all methods in the refinement category. Here, we present Princeton_TIGRESS, which when benchmarked on all CASP 7,8,9, and 10 refinement targets, simultaneously increased GDT_TS 76% of the time with an average improvement of 0.83 GDT_TS points per structure. The method was additionally benchmarked on models produced by top performing three‐dimensional structure prediction servers during CASP10. The robustness of the Princeton_TIGRESS protocol was also tested for different random seeds. We make the Princeton_TIGRESS refinement protocol freely available as a web server at http://atlas.princeton.edu/refinement . Using this protocol, one can consistently refine a prediction to help bridge the gap between a predicted structure and the actual native structure. Proteins 2014; 82:794–814. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
    
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794–814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7‐10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics‐based and hybrid energy functions, as well as a coordinate‐free representation of the protein structure through distance‐binning distances to capture fine‐grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross‐validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7‐10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web‐servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/ . Proteins 2017; 85:1078–1098. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
    
Structures of seven CASP13 targets were determined using cryo-electron microscopy (cryo-EM) technique with resolution between 3.0 and 4.0 Å. We provide an overview of the experimentally derived structures and describe results of the numerical evaluation of the submitted models. The evaluation is carried out by comparing coordinates of models to those of reference structures (CASP-style evaluation), as well as checking goodness-of-fit of modeled structures to the cryo-EM density maps. The performance of contributing research groups in the CASP-style evaluation is measured in terms of backbone accuracy, all-atom local geometry and similarity of inter-subunit interfaces. The results on the cryo-EM targets are compared with those on the whole set of eighty CASP13 targets. A posteriori refinement of the best models in their corresponding cryo-EM density maps resulted in structures that are very close to the reference structure, including some regions with better fit to the density.  相似文献   

20.
    
We describe the performance of MELD-accelerated molecular dynamics (MELDxMD) in determining protein structures in the NMR-data-assisted category in CASP13. Seeded from web server predictions, MELDxMD was found best in the NMR category, over 17 targets, outperforming the next-best groups by a factor of ~4 in z-score. MELDxMD gives ensembles, not single structures; succeeds on a 326-mer, near the current upper limit for NMR structures; and predicts structures that match experimental residual dipolar couplings even though the only NMR-derived data used in the simulations was NOE-based ambiguous atom–atom contacts and backbone dihedrals. MELD can use noisy and ambiguous experimental information to reduce the MD search space. We believe MELDxMD is a promising method for determining protein structures from NMR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号