首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects in phosphotransferase chemotaxis in cya and cpd mutants previously cited as evidence of a cyclic GMP or cyclic AMP intermediate in signal transduction were not reproduced in a study of chemotaxis in Escherichia coli and Salmonella typhimurium. In cya mutants, which lack adenylate cyclase, the addition of cyclic AMP was required for synthesis of proteins that were necessary for phosphotransferase transport and chemotaxis. However, the induced cells retained normal phosphotransferase chemotaxis after cyclic AMP was removed. Phosphotransferase chemotaxis was normal in a cpd mutant of S. typhimurium that has elevated levels of cyclic GMP and cyclic AMP. S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase. After preincubation with cyclic AMP, the crr mutants were deficient in enzyme II glucose-mediated transport and chemotaxis, but other chemotactic responses were normal. It is concluded that cyclic GMP does not determine the frequency of tumbling and is probably not a component of the transduction pathway. The only known role of cyclic AMP is in the synthesis of some proteins that are subject to catabolite repression.  相似文献   

2.
In Escherichia coli cya mutants, deficient in adenylate cyclase (EC 4.6.1.1), basal cellular rates of glycogen synthesis were lower and the relative increases produced by exogenous cyclic adenosine 3',5'-monophosphate during growth on glucose were greater than in their respective parent strains. These observations provide strong evidence that endogenous cyclic AMP is one of the key regulators of glycogen synthesis in growing E. coli. In crp mutants, deficient in cyclic AMP receptor protein (CRP), the basal cellular rates of glycogen synthesis were much lower than in their respective parent strains. Stimulation of glycogen synthesis by exogenous cyclic AMP was markedly attenuated in the three crp mutants. Thus, stimulation of glycogen synthesis by either endogenous or exogenous cyclic AMP appears to require CRP. Functional CRP appeared to be required for all three responses observed after cyclic AMP addition: an abrupt step-up in the cellular rate of glycogen synthesis, a continuing exponential increase in rate, and a stimulation of the rate during a subsequent nitrogen starvation. To account for these responses, we derived a mathematical model in which the cyclic AMP-CRP complex regulates the differential rate of synthesis of an enzyme metabolizing an effector of the rate-limiting enzyme of glycogen synthesis.  相似文献   

3.
Of the 30 carbon starvation proteins whose induction has been previously shown to be important for starvation survival of Escherichia coli, two-thirds were not induced in cya or crp deletion mutants of E. coli at the onset of carbon starvation. The rest were induced, although not necessarily with the same temporal pattern as exhibited in the wild type. The starvation proteins that were homologous to previously identified heat shock proteins belonged to the latter class and were hyperinduced in delta cya or delta crp mutants during starvation. Most of the cyclic AMP-dependent proteins were synthesized in the delta cya mutant if exogenous cyclic AMP was added at the onset of starvation. Furthermore, beta-galactosidase induction of several carbon starvation response gene fusions occurred only in a cya+ genetic background. Thus, two-thirds of the carbon starvation proteins of E. coli require cyclic AMP and its receptor protein for induction; the rest do not. The former class evidently has no role in starvation survival, since delta cya or delta crp mutants of either E. coli or Salmonella typhimurium survived starvation as well as their wild-type parents did. The latter class, therefore, is likely to have a direct role in starvation survival. This possibility is strengthened by the finding that nearly all of the cya- and crp-independent proteins were also induced during nitrogen starvation and, as shown previously, during phosphate starvation. Proteins whose synthesis is independent of cya- and crp control are referred to as Pex (postexponential).  相似文献   

4.
5.
6.
7.
From an Escherichia coli K-12 strain lacking adenylate cyclase (cya) and cyclic AMP receptor protein (crp), two mutants were isolated that synthesize uridine phosphorylase constitutively. The mutations differ from one another and also from a wild type in the maximum rate of uridine phosphorylase synthesis. They have constitutive expression of the uridine phosphorylase gene (udp) in the presence of repressor protein coded by the cytR regulatory gene and decrease the sensitivity of the udp gene simultaneously with catabolite repression. Both mutations cause a high level of udp expression whether they are in a cya crp or in a cya+ crp+ background. Another mutation (udpP1) isolated previously alters the response of udp gene to the ctyR repressor and produces a higher constitutive level of uridine phosphorylase in a cytR+ than in a cytR background when bacteria are grown in glucose. The synthesis of uridine phosphorylase in this mutant is dependent on an intact cyclic AMP-cyclic AMP receptor protein complex. All mutations studied are cis-acting and extremely closely linked to the udp structural gene, and appear to affect the uridine phosphorylase promoter-operator region. The data obtained are in accordance with a suggestion that the cytR repressor protein normally asserts its function by preventing the positive action of cyclic AMP-cyclic AMP receptor protein complex.  相似文献   

8.
Dibutyryl cyclic GMP, but not dibutyryl cyclic AMP, derepresses sporulation and synthesis of mycobacillin and dipicolinic acid under conditions of glucose repression in Bacillus subtilis strain B34. Neither of these compounds appears to affect sporulation and synthesis of mycobacillin and dipicolinic acid in this strain under normal physiological conditions. Mutants insensitive to glucose repression were indifferent to the addition of either of the nucleotides both in the presence and in the absence of glucose. A role for dibutyryl cyclic GMP in annulling the repressing effect of glucose on sporulation and on synthesis of mycobacillin and dipicolinic acid is thus indicated.  相似文献   

9.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

10.
Regulation of ubiG gene expression in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

11.
12.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.  相似文献   

13.
We report that in Escherichia coli, chemotaxis to sugars transported by the phosphotransferase system is mediated by adenylate cyclase, the nucleotide cyclase linked to the phosphotransferase system. We conclude that adenylate cyclase is required in this chemotaxis pathway because mutations in the cyclase gene (cya) eliminate or impair the response to phosphotransferase system sugars, even though other components of the phosphotransferase system known to be required for the detection of these sugars are relatively unaffected by such mutations. Moreover, merely supplying the mutant bacteria with the products of this enzyme, cyclic AMP and cyclic GMP, does not restore the chemotactic response. Because a residual chemotactic response is observed in certain strains with residual cyclic GMP synthesis but no cyclic AMP synthesis, it appears that the guanylate cyclase activity rather than the adenylate cyclase activity of the enzyme may be required for chemotaxis to sugars transported by the phosphotransferase system. Mutations in the cyclic nucleotide phosphodiesterase gene, which increase the level of both cyclic AMP and cyclic GMP, also reduce chemotaxis to these sugars. Therefore, it appears that control of the level of a cyclic nucleotide is critical for the chemotactic response to phosphotransferase system sugars.  相似文献   

14.
15.
Glucose- or nitrogen-starved cultures of Escherichia coli exhibited enhanced resistance to heat (57 degrees C) or H2O2 (15 mM) challenge, compared with their exponentially growing counterparts. The degree of resistance increased with the time for which the cells were starved prior to the challenge, with 4 h of starvation providing the maximal protection. Protein synthesis during starvation was essential for these cross protections, since chloramphenicol addition at the onset of starvation prevented the development of thermal or oxidative resistance. Starved cultures also demonstrated stronger thermal and oxidative resistance than did growing cultures adapted to heat, H2O2, or ethanol prior to the heat or H2O2 challenge. Two-dimensional gel electrophoresis of 35S-pulse-labeled proteins showed that subsets of the 30 glucose starvation proteins were also synthesized during heat or H2O2 adaptation; three proteins were common to all three stresses. Most of the common proteins were among the previously identified Pex proteins (J.E. Schultz, G. I. Latter, and A. Matin, J. Bacteriol. 170:3903-3909, 1988), which are independent of cyclic AMP positive control for their induction during starvation. Induction of starvation proteins dependent on cyclic AMP was not important in these cross protections, since a delta cya strain of E. coli K-12 exhibited the same degree of resistance to heat or H2O2 as the wild-type parent did during both growth and starvation.  相似文献   

16.
Wild-type Salmonella typhimurium could not grow with exogenous cyclic adenosine 3',5'-monophosphate (AMP) as the sole source of phosphate, but mutants capable of cyclic AMP utilization could be isolated provided the parental strain contained a functional cyclic AMP phosphodiesterase.All cyclic AMP-utilizing mutants had the growth and fermentation properties of cyclic AMP receptor protein (crp) mutants, and some lacked cyclic AMP binding activity in vitro. The genetic defect in each such mutant was due to a single point mutation, which was co-transducible with cysG. crp mutants isolated by alternative procedures also exhibited the capacity to utilize cyclic AMP. crp mutants synthesized cyclic AMP at increased rates and contained enhanced cellular cyclic AMP levels relative to the parental strains, regardless of whether or not cyclic AMP phosphodiesterase was active. Moreover, adenylate cyclase activity in vivo was less sensitive to regulation by glucose, possibly because the enzyme II complexes of the phosphotransferase system, responsible for glucose transport and phosphorylation, could not be induced to maximal levels. This possibility was strengthened by the observation that enzyme II activity (measured both in vitro by sugar phosphorylation and in vivo by sugar transport and chemotaxis) was inducible in the parental strain but not in crp mutants. The results suggest that the cyclic AMP receptor protein regulates cyclic AMP metabolism as well as catabolic enzyme synthesis.  相似文献   

17.
18.
Feeding rats in diet high in glucose has been demonstrated to inhibit the induction of many enzymes, block the action of glucocorticoids, and, in general, appears to result in decreased cyclic AMP activity. We found that glucose feeding depresses both messenger RNA (mRNA) and non-mRNA synthesis. Electron microscopic examination of the nucleus revealed that glucose feeding decreases the granular component of liver cell nucleoli. It only slightly decreases liver cyclic AMP levels, but produces a sixfold elevation in levels of the cyclic AMP antagonist, cyclic GMP. Administration of bromocyclic GMP, like glucose feeding, depresses mRNA synthesis, but does not simulate the effect of the carbohydrate on nuclear morphology. In addition, glucose feeding halves liver inorganic phosphate and triples ATP levels. Phosphorylation of nuclear proteins, however, remains unaltered. Despite the antagonism between glucose feeding and glucocorticoid activity, the former compound did not change the binding of dexamethasone to liver nuclei.  相似文献   

19.
Mechanism of CRP-mediated cya suppression in Escherichia coli.   总被引:9,自引:2,他引:7  
Escherichia coli strain NCR30 contains a cya lesion and a second-site cya suppressor mutation that lies in the crp gene. NCR30 shows a pleiotropic phenotypic reversion to the wild-type state in expressing many operons that require the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex for positive control. In vivo beta-galactosidase synthesis in NCR30 was sensitive to glucose-mediated repression, which was relieved not only by cAMP but also by cyclic GMP and cyclic CMP. The CRP isolated from NCR30 differed from the protein isolated from wild-type E. coli in many respects. The mutant protein bound cAMP with four to five times greater affinity than wild-type CRP. Protease digestion studies indicated that native NCR30 CRP exists in the cAMP-CRP complex-like conformation. The protein conferred a degree of cAMP independence on the in vitro synthesis of beta-galactosidase. In addition, the inherent positive control activity of the mutant protein in vitro was enhanced by those nucleotides that stimulate in vivo beta-galactosidase synthesis in NCR30. The results of this study supported the conclusion that the crp allele of NCR30 codes for a protein having altered effector specificity yet capable of promoting positive control over catabolite-sensitive operons in the absence of an effector molecule.  相似文献   

20.
In a clonal strain of rat pituitary tumour cells (GH4C1 cells), thyroliberin stimulated prolactin secretion and synthesis: effects that could be demonstrated after 5 min and 4–5 h of treatment, respectively. Within 0.5–5 min after addition of thyroliberin, maximal increases (2–4 hold) in cellular cyclic GMP concentrations were observed, and this rise preceded or occurred simultaneously with that of cyclic AMP. After 60 min of treatment the concentrations of the cyclic nucleotides had returned to control values. Half maximal and maximal stimulation of cyclic GMP elevations were obtained with approx. 2·109 and approx. 27·10?9 thyroliberin, respectively. Aminophylline increased both cyclic GMP and cyclic AMP, and potentiated the stimulatory effects of thyroliberin on both cyclic nucleotides. The dibutyryl derivative of cyclic GMP (10?4–10?6 M) stimulated prolactin synthesis, but not hormone release. Prostaglandin E2 (3·10?7 M) stimulated cellular cyclic AMP concentrations, but did not affect cyclic GMP levels. We conclude that thyroliberin in the GH4C1 ccell strain stimulates cyclic GMP formation, in addition to elevate cyclic AMP concentrations. The stimulatory effect on cyclic GMP is probably not secondary to the rise in cyclic AMP concentration, since prostaglandin E2 elevates only cyclic GMP is involved in the action of thyroliberin on prolactin, the present results suggest a role on hormone synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号