首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase α -primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase α and recruits DNA polymerase δ and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase δ, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase ε normally replicates this strand, but under conditions of dysfunction, DNA polymerase δ may substitute.  相似文献   

2.
Inhibition of DNA synthesis in permeabilized L cells by novobiocin   总被引:1,自引:0,他引:1  
Novobiocin was equipotent in inhibiting DNA and RNA synthesis in cultured mouse L cells. It also suppressed in vitro DNA and RNA synthesis in permeabilized L cells and nuclei; 50 percent inhibition of DNA and RNA synthesis was obtained by 1 mM and 20 mM novobiocin, respectively. ATP antagonized the effect of novobiocin. Nalidixic acid had a weak inhibitory effect on in vitro DNA synthesis; 10 mM nalidixic acid showed 60 percent inhibition. ATP did not antagonize nalidixic acid. The inhibitory effect of novobiocin exceeded that of aphidicolin. These findings suggest a participation of a gyrase- and/or type II topoisomerase-like enzyme in the DNA replication machinery in L cells.  相似文献   

3.
Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.  相似文献   

4.
Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo.  相似文献   

5.
Mitochondrial DNA (mtDNA) encodes for proteins required for oxidative phosphorylation, and mutations affecting the genome have been linked to a number of diseases as well as the natural ageing process in mammals. Human mtDNA is replicated by a molecular machinery that is distinct from the nuclear replisome, but there is still no consensus on the exact mode of mtDNA replication. We here demonstrate that the mitochondrial single-stranded DNA binding protein (mtSSB) directs origin specific initiation of mtDNA replication. MtSSB covers the parental heavy strand, which is displaced during mtDNA replication. MtSSB blocks primer synthesis on the displaced strand and restricts initiation of light-strand mtDNA synthesis to the specific origin of light-strand DNA synthesis (OriL). The in vivo occupancy profile of mtSSB displays a distinct pattern, with the highest levels of mtSSB close to the mitochondrial control region and with a gradual decline towards OriL. The pattern correlates with the replication products expected for the strand displacement mode of mtDNA synthesis, lending strong in vivo support for this debated model for mitochondrial DNA replication.  相似文献   

6.
Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase ot-primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase ca and recruits DNA polymerase S and the flap endonuclease FEN1 for elongation and in preparation for its requirement during maturation, respectively. Nick translation by the strand displacement action of DNA polymerase 8, coupled with the nuclease action of FEN1, results in processive RNA degradation until a proper DNA nick is reached for closure by DNA ligase I. In the event of excessive strand displacement synthesis, other factors, such as the Dna2 nuclease/helicase, are required to trim excess flaps. Paradoxically, the composition and activity of the much simpler leading strand machinery has not been clearly established. The burden of evidence suggests that DNA polymerase E normally replicates this strand,but under conditions of dysfunction, DNA polymerase 8 may substitute.  相似文献   

7.
Cells use homology‐dependent DNA repair to mend chromosome breaks and restore broken replication forks, thereby ensuring genome stability and cell survival. DNA break repair via homology‐based mechanisms involves nuclease‐dependent DNA end resection, which generates long tracts of single‐stranded DNA required for checkpoint activation and loading of homologous recombination proteins Rad52/51/55/57. While recruitment of the homologous recombination machinery is well characterized, it is not known how its presence at repair loci is coordinated with downstream re‐synthesis of resected DNA. We show that Rad51 inhibits recruitment of proliferating cell nuclear antigen (PCNA), the platform for assembly of the DNA replication machinery, and that unloading of Rad51 by Srs2 helicase is required for efficient PCNA loading and restoration of resected DNA. As a result, srs2Δ mutants are deficient in DNA repair correlating with extensive DNA processing, but this defect in srs2Δ mutants can be suppressed by inactivation of the resection nuclease Exo1. We propose a model in which during re‐synthesis of resected DNA, the replication machinery must catch up with the preceding processing nucleases, in order to close the single‐stranded gap and terminate further resection.  相似文献   

8.
Engagement of DNA polymerases during apoptosis   总被引:3,自引:0,他引:3  
DNA replicative and repair machinery was investigated by means of different techniques, including in vitro nuclear enzymatic assays, immunoelectron microscopy and confocal microscopy, in apoptotic cell lines such as HL-60 treated with methotrexate, P815 and K562 exposed to low temperatures and Friend cells exposed to ionizing radiation. The results showed a shift of DNA polymerase α and β activities. DNA polymerase α, which in controls was found to be the principal replicative enzyme driving DNA synthesis, underwent, upon apoptosis, a large decrease of its activity being replaced by DNA polymerase β which is believed to be associated with DNA repair. Such a modulation was concomitant with a topographical redistribution of both DNA polymerase α and the incorporation of BrdUrd throughout the nucleus. Taken together, these results indicate the occurrence of a dramatic response of the DNA machinery, through a possible common or at least similar behaviour when different cell lines are triggered to apoptosis. Although this possibility requires further investigation, these findings suggest an extreme attempt of the cell undergoing apoptosis to preserve its nuclear environment by switching on a repair/defence mechanism during fragmentation and chromatin margination.  相似文献   

9.
The remote control of transcription, DNA looping and DNA compaction.   总被引:1,自引:0,他引:1  
M Amouyal 《Biochimie》1991,73(10):1261-1268
  相似文献   

10.
11.
This short article summarizes some of the research carried out recently by my laboratory colleagues on the function of DNA polymerase zeta (polζ) in mammalian cells. Some personal background is also described, relevant to research associations with Yale University and its continuing influence. Polζ is involved in the bypass of many DNA lesions by translesion DNA synthesis and is responsible for the majority of DNA damage-induced point mutagenesis in mammalian cells (including human cells), as well as in yeast. We also found that the absence of this enzyme leads to gross chromosomal instability in mammalian cells and increased spontaneous tumorigenesis in mice. Recently, we discovered a further unexpectedly critical role for polζ: it plays an essential role in allowing continued rapid proliferation of cells and tissues. These observations and others indicate that polζ engages frequently during DNA replication to bypass and tolerate DNA lesions or unusual DNA structures that are barriers for the normal DNA replication machinery.  相似文献   

12.
Inhibition of DNA methyltransferase inhibits DNA replication   总被引:8,自引:0,他引:8  
Ectopic expression of DNA methyltransferase transforms vertebrate cells, and inhibition of DNA methyltransferase reverses the transformed phenotype by an unknown mechanism. We tested the hypothesis that the presence of an active DNA methyltransferase is required for DNA replication in human non-small cell lung carcinoma A549 cells. We show that the inhibition of DNA methyltransferase by two novel mechanisms negatively affects DNA synthesis and progression through the cell cycle. Competitive polymerase chain reaction of newly synthesized DNA shows decreased origin activity at three previously characterized origins of replication following DNA methyltransferase inhibition. We suggest that the requirement of an active DNA methyltransferase for the functioning of the replication machinery has evolved to coordinate DNA replication and inheritance of the DNA methylation pattern.  相似文献   

13.
The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.  相似文献   

14.
During lagging strand DNA replication, the Okazaki fragment maturation machinery is requiredto degrade the initiator RNA with high speed and efficiency, and to generate with great accuracya proper DNA nick for closure by DNA ligase. Several operational parameters are important ingenerating and maintaining a ligatable nick. These are the strand opening capacity of the laggingstrand DNA polymerase ? (Pol ?), and its ability to limit strand opening to that of a fewnucleotides. In the presence of the flap endonuclease FEN1, Pol ? rapidly hands off the strandopenedproduct for cutting by FEN1, while in its absence, the ability of DNA polymerase ? toswitch to its 3’-5’-exonuclease domain in order to degrade back to the nick position is importantin maintaining a ligatable nick. This regulatory system has a built-in redundancy so thatdysfunction of one of these activities can be tolerated in the cell. However, further dysfunctionleads to uncontrolled strand displacement synthesis with deleterious consequences, as is revealedby genetic studies of exonuclease-defective mutants of S. cerevisiae Pol ?. These sameparameters are also important for other DNA metabolic processes, such as base excision repair,that depend on Pol ? for synthesis.  相似文献   

15.
The mitochondrial replication machinery in human cells includes the DNA polymerase γ holoenzyme and the TWINKLE helicase. Together, these two factors form a processive replication machinery, a replisome, which can use duplex DNA as template to synthesize long stretches of single-stranded DNA. We here address the importance of the smaller, accessory B subunit of DNA polymerase γ and demonstrate that this subunit is absolutely required for replisome function. The duplex DNA binding activity of the B subunit is needed for coordination of POLγ holoenzyme and TWINKLE helicase activities at the mtDNA replication fork. In the absence of proof for direct physical interactions between the components of the mitochondrial replisome, these functional interactions may explain the strict interdependence of TWINKLE and DNA polymerase γ for mitochondrial DNA synthesis. Furthermore, mutations in TWINKLE as well as in the catalytic A and accessory B subunits of the POLγ holoenzyme, may cause autosomal dominant progressive external ophthalmoplegia, a disorder associated with deletions in mitochondrial DNA. The crucial importance of the B subunit for replisome function may help to explain why mutations in these three proteins cause an identical syndrome.  相似文献   

16.
17.
Microtubule-associated protein-2 (MAP-2) isolated from porcine brains stimulated DNA synthesis catalyzed by the nuclear matrix isolated from Physarum polycephalum in the presence of activated DNA as exogenous templates. The degree of the stimulation depended on the amount of the nuclear matrix, but not on that of the template. MAP-2 also stimulated DNA polymerase alpha activity solubilized from nuclei, but not DNA polymerase beta activity. These results suggest that MAP-2 stimulates DNA synthesis by interacting with the putative DNA replication machinery including DNA polymerase alpha bound to the matrix. Similar stimulation occurred in the nuclear matrix isolated from HeLa and rat ascites hepatoma cells, which strongly suggests that MAP-2 is involved in the control of DNA replication in eukaryotic cells.  相似文献   

18.
We developed a mammalian plasmid replicon with a formerly uncharacterized origin of DNA synthesis, 8xRep*. 8xRep* functions efficiently to support once-per-cell-cycle synthesis of plasmid DNA which initiates within Rep*. By characterizing Rep*'s requirements for acting as an origin, we have uncovered several striking properties it shares with DS, the only other well-characterized, licensed, mammalian plasmid origin of DNA synthesis. Rep* contains a pair of previously unrecognized Epstein-Barr nuclear antigen 1 (EBNA1)-binding sites that are both necessary and sufficient in cis for its origin activity. These sites have an essential 21-bp center-to-center spacing, are bent by EBNA1, and recruit the origin recognition complex. The properties shared between DS and Rep* define cis and trans characteristics of a mammalian, extrachromosomal replicon. The role of EBNA1 likely reflects its evolution from cellular factors involved in the assembly of the initiation machinery.  相似文献   

19.
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.  相似文献   

20.
In mammalian cells DNA synthesis is more complicated than in prokaryotes and less well understood. Here we incubated intact mammalian cells (polyamine auxotrophic Chinese hamster ovary cells and primary human fibroblasts) with [32P]orthophosphate and found that, besides high molecular weight DNA, a species of low molecular weight DNA, approximately 450 bp in size, became efficiently labeled. The short DNA was labeled first, and in pulse-chase experiments the labeling was transient. The isolated small DNA fragments (RNase A-treated) were phosphorylated by T4 polynucleotide kinase specific for polynucleotides with 5'-OH ends. A polynucleotide kinase phosphorylating these DNA pieces was also detected in nuclear extracts of the cells. Treatment with alkaline phosphatase removed most of the 32P label incorporated into the small DNA in vivo. Labeling with deoxyribonucleosides did not reveal these fragments. We hypothesize that the low molecular weight DNA represents Okazaki fragments and that the mammalian DNA replication machinery includes a polynucleotide kinase phosphorylating the 5'-termini of Okazaki fragments. This would imply a novel step in DNA synthesis. We also show that depriving cells of polyamines reversibly blocks synthesis of high molecular weight DNA and leads to accumulation of the short DNA pieces, suggesting a role for polyamines in joining the Okazaki fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号