首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cloud forests are of great importance in the hydrological functioning of watersheds in subhumid East Africa. However, the montane forests of Mt. Kilimanjaro are heavily threatened by global change impacts. Based on an evaluation of over 1500 vegetation plots and interpretation of satellite imagery from 1976 and 2000, land-cover changes on Kilimanjaro were evaluated and their impact on the water balance estimated. While the vanishing glaciers of Kilimanjaro attract broad interest, the associated increase of frequency and intensity of fires on the slopes of Kilimanjaro is less conspicuous but ecologically far more significant. These climate change-induced fires have lead to changes in species composition and structure of the forests and to a downward shift of the upper forest line by several hundred metres. During the last 70 years, Kilimanjaro has lost nearly one-third of its forest cover, in the upper areas caused by fire, on the lower forest border mainly caused by clearing. The loss of 150 km2 of cloud forest – the most effective source in the upper montane and subalpine fog interception zone – caused by fire during the last three decades means a considerable reduction in water yield. In contrast to common belief, global warming does not necessarily cause upward migration of plants and animals. On Kilimanjaro the opposite trend is under way, with consequences more harmful than those due to the loss of the showy ice cap of Africa's highest mountain.  相似文献   

2.
Vegetation of Kilimanjaro: hidden endemics and missing bamboo   总被引:2,自引:1,他引:1  
Kilimanjaro has a large variety of forest types over an altitudinal range of 3000 m containing over 1200 vascular plant species. Montane Ocotea forests occur on the wet southern slope. Cassipourea and Juniperus forests grow on the dry northern slope. Subalpine Erica forests at 4100 m represent the highest elevation cloud forests in Africa. In contrast to this enormous biodiversity, the degree of endemism is low. However, forest relicts in the deepest valleys of the cultivated lower areas suggest that a rich forest flora inhabited Mt Kilimanjaro in the past, with restricted‐range species otherwise only known from the Eastern Arc mountains. The low degree of endemism on Kilimanjaro may result from destruction of lower altitude forest rather than the relatively young age of the mountain. Another feature of the forests of Kilimanjaro is the absence of a bamboo zone, which occurs on all other tall mountains in East Africa with a similarly high rainfall. Sinarundinaria alpina stands are favoured by elephants and buffaloes. On Kilimanjaro these megaherbivores occur on the northern slopes, where it is too dry for a large bamboo zone to develop. They are excluded from the wet southern slope forests by topography and humans, who have cultivated the foothills for at least 2000 years. This interplay of biotic and abiotic factors could explain not only the lack of a bamboo zone on Kilimanjaro but also offers possible explanations for the patterns of diversity and endemism. Kilimanjaro's forests can therefore serve as a striking example of the large and long‐lasting influence of both animals and humans on the African landscape.  相似文献   

3.
Natural flora, vegetation, diversity and structure of 62 traditional coffee–banana plantations on Kilimanjaro were investigated and compared with the other vegetation formations on this volcano on basis of over 1400 plots following the method of Braun-Blanquet. The vegetation of the so-called Chagga homegardens belongs floristically to the formation of ruderal vegetation forming two main communities that are determined by altitude. These coffee–banana plantations maintain a high biodiversity with about 520 vascular plant species including over 400 non-cultivated plants. Most species (194) occurring in the Chagga homegardens are forest species, followed by 128 ruderal species, including 41 neophytes. Typical of the agroforestry system of the Chagga homegardens is their multilayered vegetation structure similar to a tropical montane forest with trees, shrubs, lianas, epiphytes and herbs. Beside relicts of the former forest cover, which lost most of their former habitats, there are on the other hand (apophytic) forest species, which were directly or indirectly favoured by the land use of the Chagga people. High demand of wood, the introduction of coffee varieties that are sun-tolerant and low coffee prizes on the world marked endanger this effective and sustainable system.  相似文献   

4.
In earlier papers a qualitative and quantitative model was developed for predicting the number of forest fires occurring per day. This model permits the forecast at 00.00 hours Universal Time Convention (UTC) of any day (d), the number of forest fires per day for a range of several days (d tod+5) over a particular region. Input data are the number of forest fires in the region during two preceding days (d–2 andd–1) and the type of day (real and evaluated from radiosonde ford–2,d–1,d and predicted from meteorological medium-range forecasts, i.e. of European Centre, ford+1,d+2,d+3,d+4 andd+5. As this model requires data obtained by radiosonde, particularly temperatures and geopotentials at 850 and 700 hPa and dew points (or specific humidity) at 850 hPa, this study investigates the spatial validity of the model in relation to the distance from the radiosonde station (RS). The highest quality forecast is obtained for the region immediately surrounding the RS, and diminishes with increasing distance from it, this being due to the data obtained from the RS not being representative of the atmospheric column over the region. Hence, the derivation of the critical distance for a particular quality level of measurement. Conversely, fixed quality level implies a specific separation between RS and the region for the prediction, with a higher predictive quality implying a shorter distance.  相似文献   

5.
Forest fires are a significant and natural element of the circumboreal forest. Fire activity is strongly linked to weather, and increased fire activity due to climate change is anticipated or arguably has already occurred. Recent studies suggest a doubling of area burned along with a 50% increase in fire occurrence in parts of the circumboreal by the end of this century. Fire management agencies' ability to cope with these increases in fire activity is limited, as these organizations operate with a narrow margin between success and failure; a disproportionate number of fires may escape initial attack under a warmer climate, resulting in an increase in area burned that will be much greater than the corresponding increase in fire weather severity. There may be only a decade or two before increased fire activity means fire management agencies cannot maintain their current levels of effectiveness.  相似文献   

6.
Changes to forest production drivers (light, water, temperature, and site nutrient) over the last 55 years have been documented in peer‐reviewed literature. The main objective of this paper is to review documented evidence of the impacts of climate change trends on forest productivity since the middle of the 20th century. We first present a concise overview of the climate controls of forest production, provide evidence of how the main controls have changed in the last 55 years, followed by a core section outlining our findings of observed and documented impacts on forest productivity and a brief discussion of the complications of interpreting trends in net primary production (NPP). At finer spatial scales, a trend is difficult to decipher, but globally, based on both satellite and ground‐based data, climatic changes seemed to have a generally positive impact on forest productivity when water was not limiting. Of the 49 papers reporting forest production levels we reviewed, 37 showed a positive growth trend, five a negative trend, three reported both a positive and a negative trend for different time periods, one reported a positive and no trend for different geographic areas, and two reported no trend. Forests occupy ≈52% of the Earth's land surface and tend to occupy more temperature and radiation‐limited environments. Less than 7% of forests are in strongly water‐limited systems. The combined and interacting effects of temperature, radiation, and precipitation changes with the positive effect of CO2, the negative effects of O3 and other pollutants, and the presently positive effects of N will not be elucidated with experimental manipulation of one or a few factors at a time. Assessments of the greening of the biosphere depend on both accurate measurements of rates (net ecosystem exchange, NPP), how much is stored at the ecosystem level (net ecosystem production) and quantification of disturbances rates on final net biome production.  相似文献   

7.
8.
Question: Reliable estimates of understorey (non-tree) plant cover following fire are essential to assess early forest community recovery. Photographic digital image analysis (DIA) is frequently used in seral, single-strata vegetation, given its greater objectivity and repeatability compared to observer visual estimation; however, its efficacy in multi-strata forest vegetation may be compromised, where various visual obstructions (coarse downed wood [CDW], conifer regeneration, and shadows) may conceal plant cover in the digital imagery. We asked whether vegetation complexity influences plant cover estimated by DIA relative to two visual methods: plot-level (20 m2) estimation (PLE) and quadrat-level (1 m2) estimation (QLE)? Location: Greater Yellowstone Ecosystem, USA. Methods: We estimated understorey plant cover in subalpine forest vegetation on permanent plots (n = 141) at two study areas ~30 years after the 1988 Yellowstone fires to: (a) assess differences in visual obstructions between study areas in our digital imagery; (b) compare digital to visual estimates of plant cover; and (c) determine relationships between estimated plant cover and visual obstructions measured in situ. Results: Percent conifer regeneration pixels differed significantly (odds ratio = 8.34) between study areas which represented the greatest difference in visual obstructions. At the study area with lower conifer pixels, DIA estimated 9% (95% confidence interval [CI] = 3%–14%) and 16% (95% CI = 10%–21%) more understorey plant cover than PLE or QLE, respectively, but had comparable variability. At the study area with higher conifer pixels, DIA estimated 28% (95% CI = 24%–32%) and 22% (95% CI = 18%–26%) less understorey plant cover than PLE or QLE, respectively, and had more variability. Furthermore, plot-level subcanopy regeneration (height>137 cm) density was negatively associated with digitally derived plant cover but showed no relationship with visually derived plant cover. Conclusions: Post-fire conifer regeneration hindered the efficacy of DIA in estimating understorey plant cover. Digital estimation is advantageous in single-strata vegetation but should not be used in complex, multi-strata vegetation.  相似文献   

9.
10.
Aims (1) To define the physical correlates of indigenous forest in KwaZulu-Natal province and develop a model, based on climatic parameters, to predict the potential distribution of forest subtypes in the province. (2) To explore the impact of palaeoclimatic change on forest distribution, providing an insight into the regional-scale/historical forces shaping the pattern and composition of present-day forest communities. (3) To investigate potential future shifts in forest distribution associated with projected climate change. Location KwaZulu-Natal province, South Africa. Methods A BIOCLIM-type approach is adopted. Bioclimatic ‘profiles’ for eight different forest subtypes are defined from a series of grid overlays of current forest distribution against nineteen climatic and geographical variables, using ArcInfo GIS grid-based processing. A principal components analysis is performed on a selection of individual forests to identify those variables most significant in distinguishing different forest subtypes. Five models are developed to predict the distribution of forest subtypes from their bioclimatic profiles. Maps of the potential distribution of forest subtypes predicted by these models under current climatic conditions are produced, and model accuracy assessed. One model is applied to two palaeoclimatic scenarios, the Last Glacial Maximum (LGM) (≈18,000 BP ) and the Holocene altithermal (≈7000 BP ), and to projected future climate under a doubling in global atmospheric carbon dioxide. Results Seven variables; altitude, mean annual temperature, annual rainfall range, potential evaporation, annual temperature range, mean annual precipitation and mean winter rainfall, are most important in distinguishing different forest subtypes. Under the most accurate model, the potential present-day distribution of all forest subtypes is more extensive than is actually observed, but is supported by recent historical evidence. During the LGM, Afromontane forest occupied a much reduced and highly fragmented area in the mid-altitude region currently occupied by scarp forest. During the Holocene altithermal, forest expanded in area, with a mixing of Afromontane and Indian Ocean coastal belt forest elements along the present-day scarp forest belt. Under projected climatic conditions, forest shifts in altitude and latitude and occupies an area similar to its current potential and more extensive than its actual current distribution. Main conclusions Biogeographical history and present physical diversity play a major role in the evolution and persistence of the diversity of forest in KwaZulu-Natal. It is important to adopt a long-term and regional perspective to forest ecology, biogeography, conservation and management. The area and altitudinal and latitudinal distribution of forest subtypes show considerable sensitivity to climate change. The isolation of forest by anthropogenic landscape change has limited its radiation potential and ability to track environmental change. Long-term forest preservation requires reserves in climatically stable areas, or spanning altitudinal or latitudinal gradients allowing for forest migration, along with innovative matrix management strategies. Dune, sand, swamp, riverine and lowland forest subtypes are most at risk. Scarp forests are highlighted as former refugia and important for the future conservation of forest biodiversity.  相似文献   

11.
Background: High-mountain ecosystems are centres of plant diversity that are particularly sensitive to land-use and climate change.

Aims: We investigated the ecological trends associated with land use and climate change since the 1950s in different vegetation types in high-mountain habitats in the central Apennines.

Methods: We analysed temporal changes in: Pinus mugo scrub, calcareous subalpine grasslands and alpine scree vegetation, comparing historical and recent vegetation records from vegetation plots from two periods (1955–1980 and 1990–2014) for their ecological indicator values (Landolt temperature and nutrient indicators) and structural traits (growth forms) over time using generalised linear models (GLMs).

Results: We observed significant temporal differences in the ecology and structure of the analysed habitats. In the Pinus mugo scrub we detected a reduction of subalpine and herbaceous species and in calcareous alpine screes we observed an increment of the lower montane, montane and subalpine species and of dwarf shrubs. Conversely, subalpine grasslands were stable over time.

Conclusions: Ecological changes that have occurred in the Central Apennines, following changes in type and intensity of land use and recent warming are consistent with those observed in other European mountains, for which climate and land-use changes are claimed as the main driving forces.  相似文献   


12.
基于中国知网(CNKI)和学术Google主题词为“气候变化”与“森林”的科技文献,根据全国范围的不同区域植被类型,运用整合分析方法就气候变化对森林生态系统的影响进行了系统评估,结果表明:在观测到的影响中,各个区域植被类型的树木物候、森林生产力与森林火灾方面的影响趋势大体相同,但森林地理分布影响趋势存在一定的差异;在预计的可能影响中,各个区域植被类型的树木物候、森林生产力、森林碳储量、森林火灾方面的影响趋势大体相同,但森林地理分布、森林结构方面的影响存在一定的差异.最后对现有研究的不足及未来研究方向等进行了讨论和展望.  相似文献   

13.
揭示大兴安岭北部气候变化敏感区的气候生产潜力演变及其影响机理,对于维持东北地区生态系统平衡具有重要意义。基于标准树轮年表反演气象资料与研究区13个气象站观测数据组成的1707—2014年气象资料序列,利用Miami模型和小波分析等方法,分析了大兴安岭北部气候生产潜力演变及其对气候变化的响应。结果显示:1707年以来,气温、降水、蒸散和标准气候生产潜力变化均表现极显著增加趋势,标准气候生产潜力(W)变化率为1.79 kg hm~(-2)a~(-1),20世纪气候倾向率最大为10.14kg hm~(-2)a~(-1),温度气候生产潜力(WT)与降水气候生产潜力(WR)的比值21世纪最大,水热配比状态最好;4种气候生产潜力存在不同时间尺度的周期变化,但变化一致性较好,主周期均为215—219a;大兴安岭北部W呈现一致的正变化趋势,高值、次高值、低值中心分别在根河、塔河、鄂伦春偏南地区,振幅由西北向东南逐渐递减;W与年气温、降水量、蒸散量正相关显著,年平均气温每升高1℃、年降水量和蒸散量均增加10 mm,W变化率依次为453.71、74.40、219.01 kg/hm~2,且气温是影响W的主要因子;未来"暖湿型"气候对森林植被生长有利,而"冷干型"气候对森林植被生长不利,气候生产潜力增加(减少)幅度均为10.9%—21.7%。研究结果不仅可为区域尺度内研究森林植被气候生产潜力提供基础方法,而且对进一步估算森林碳汇、即将实施的碳交易及中国北部边疆生态安全研究和生态功能规划制定等具有重要参考价值。  相似文献   

14.
徐培培  曹轶辰  周涛  赵祥 《生态学报》2024,44(13):5435-5443
全球气候变化的背景下,干旱事件的发生频率、强度和持续时间不断增加,增加了森林生态系统面临的风险,探讨森林对干旱胁迫响应的规律与特征是生态学领域研究的热点。以干旱的定量表达为切入点,总结和归纳了评估森林对干旱响应的常见指标、评估方法和应用案例,特别是梳理了各种属性(如林龄、冠层高度等)的森林对干旱胁迫响应的差异性。基于当前研究进展和问题,提出在未来研究中,亟待发展多尺度综合解析各种属性森林对干旱胁迫响应差异的驱动机制研究;各种属性森林生态系统稳态转换临界点的探测;森林对干旱的响应规律在森林管理和模型优化的实践应用。  相似文献   

15.
川西亚高山森林林窗对凋落枝早期分解的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
林窗调控的土壤水热环境和分解者群落结构可能深刻影响凋落物分解过程, 已有的研究结果具有不确定性。为了解高海拔森林林窗面积对凋落枝分解的影响, 采用凋落物分解袋法, 于2012-2016年冬季和生长季节, 研究了川西亚高山森林255-290 m 2(FG1)、153-176 m 2(FG2)、38-46 m 2(FG3) 3种面积林窗和林下对岷江冷杉(Abies faxoniana)凋落枝质量损失的影响。结果显示: 林窗面积大小显著改变了林窗和林下的雪被厚度、温度和冻融循环频次; 雪被厚度和温度以FG1林窗最高, 林下最低; FG1、FG2、FG3林窗和林下枝条分解4年后的质量残留率分别为59.9%、59.5%、62.1%和55.3%, 分解系数k值分别为0.127、0.131、0.120和0.135, 95%分解时间分别为23.6、22.7、25.0和22.2 a; 与林下相比, 林窗显著增加了第一年和第二年生长季节的质量损失速率, 降低了第一年和第四年冬季的枝条质量损失速率; 林窗大小对质量损失速率的影响随分解时期变化差异明显, 质量损失速率在第一年和第三年冬季随林窗面积增大而增大, 在第三年生长季节随林窗面积增大而降低; 枝条质量损失的比例在第一年最高, 随林窗面积增加而增加, 且冬季高于生长季节。综上所述, 林窗环境变化深刻影响亚高山森林凋落枝分解, 但这种影响随林窗面积和分解时间有所差异。  相似文献   

16.
Although boreal forests are currently sinks for atmospheric C, there is some concern that they may not remain so under hypothesized warming of the boreal climate. The ecosystem model ecosys was used to evaluate possible changes in ecosystem C exchange and accumulation under changes in atmospheric CO2 concentration (Ca) proposed in emissions scenario IS92a, and accompanying changes in air temperature and precipitation proposed by general circulation models running under IS92a. Ecosys was first tested under current climate by comparing modelled rates of C exchange and accumulation with those measured in a mixed aspen–hazelnut stand in central Saskatchewan. The model was then run with daily increments of Ca, temperature and precipitation, and differences in C exchange and accumulation between current and changing climates were evaluated. Model results indicated that over a 120‐y period, a mixed aspen–hazelnut stand currently accumulates about 14 kg C m?2. Under the hypothesized changes in climate this stand would accumulate an additional 8.5 kg C m?2, largely through higher rates of CO2 fixation and longer growing seasons under higher Ca and temperature. This additional accumulation would be entirely as aspen wood, while soil organic matter would change little. This accumulation would therefore be vulnerable to losses from fire and insects.  相似文献   

17.
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.  相似文献   

18.
We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.  相似文献   

19.
孙静  范文义  于颖  王斌  陈晨 《生态学杂志》2019,30(3):793-804
森林净初级生产力(NPP)是反映森林碳源/汇能力的重要参数,其时空变化同时受气象变化(大气温度、降水等)、大气成分变化(CO2浓度、N沉降)和各种森林干扰的影响.然而,目前影响森林NPP变化的关键因子尚不明确.为了探究这一问题,本研究在综合考虑InTEC模型的干扰和非干扰因子的基础上,重新模拟了不同立地指数下的NPP-林龄关系,并嵌入1987—2015年林火数据,模拟1901—2015年塔河森林平均NPP变化特征,设计9种模拟情景定量分析1961—2015年不同影响因子对塔河森林NPP变化的贡献,并探究塔河森林NPP年际以及年代变化的主要影响因子,为森林经营提供指导性策略.结果表明: 1901—1960年,塔河森林NPP的变化趋势较为平稳,1960年以后NPP随干扰因子变化趋势显著.林火和立地指数(SCI)的引入,均在不同时间对NPP的分布特征产生了不同影响.1960年以后,塔河森林NPP大幅变化的主要原因是森林年龄和林火的干扰,其年际平均贡献率为-49%,其次是降水和CO2,分别为-28%和17%,气温和氮沉降的平均贡献率分别为5%和1%.  相似文献   

20.
汲玉河  周广胜  李宗善 《生态学报》2023,43(8):3348-3358
刺槐是黄土高原乡土树种,具有优良的水土保持和固碳功能。黄土高原生态恢复实践中实施了大规模的植树造林,刺槐林面积占沟壑丘陵区人工植树造林面积90%以上。由于种植时没有考虑刺槐的气候适宜性,一些地区的刺槐林出现了退化现象。采用最大熵模型,在0.5km×0.5km空间精度上分别模拟了1961—1990、1966—1995、1971—2000、1976—2005、1981—2010,以及2100年(典型浓度路径RCP4.5和RCP8.5气候情景下)黄土高原刺槐的气候适宜性和敏感性。模拟结果显示:黄土高原刺槐分布及其动态变化主要受到最冷月温度、极端低温、降水量、年辐射量等气候因子影响,低温(最冷月温度、极端低温)是影响刺槐的最关键因子。黄土高原西北和北部广大地区,自然环境条件不适合刺槐林生长;黄土高原东南部(关中平原和山西南部)比较适合刺槐生长。相对1961—1990年,1961—2010年期间刺槐林适宜区分布格局基本没有改变,RCP4.5和RCP8.5气候情景下刺槐林适宜区分布格局也没有显著改变。图层叠加分析发现,刺槐的气候适宜度(即存在概率)发生了明显改变。黄土高原西部和北部属于不适宜刺槐生...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号