首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cortical features of the meso- and macromeres differ from those of the micromeres in sea urchins. At the end of the 8-cell stage, the four animal cells have a continuous row of vesicles lining the free surface of the cell by transmission electron microscopy (TEM) and the nuclei and the resulting mitotic apparatuses (MA) remain at the cell centers and eventually divide equally into eight mesomeres. In the four vegetal cells, narrow gaps can be seen in the vesicular rows near the vegetal pole. The resting nuclei migrate to these gaps and on forming the spindles, they point directly to the gaps. The result is formation of vesicle-free micromeres and vesicle-covered macromeres by unequal divisions.  相似文献   

2.
3.
4.
The goal of the current study was to examine the pattern of anatomical connectivity of the human frontal pole so as to inform theories of function of the frontal pole, perhaps one of the least understood region of the human brain. Rather than simply parcellating the frontal pole into subregions, we focused on examining the brain regions to which the frontal pole is anatomically and functionally connected. While the current findings provided support for previous work suggesting the frontal pole is connected to higher-order sensory association cortex, we found novel evidence suggesting that the frontal pole in humans is connected to posterior visual cortex. Furthermore, we propose a functional framework that incorporates these anatomical connections with existing cognitive theories of the functional organization of the frontal pole. In addition to a previously discussed medial-lateral distinction, we propose a dorsal-ventral gradient based on the information the frontal pole uses to guide behavior. We propose that dorsal regions are connected to other prefrontal regions that process goals and action plans, medial regions are connected to other brain regions that monitor action outcomes and motivate behaviors, and ventral regions connect to regions that process information about stimuli, values, and emotion. By incorporating information across these different levels of information, the frontal pole can effectively guide goal-directed behavior.  相似文献   

5.
A method is presented for isolating nuclei of rat and hamster liver in a high state of purity and in a condition optically similar to nuclei within living cells.The isolation procedure consists in the homogenization and differential centrifugation of fresh liver at 0–5 ° in a salt-sucrose solution buffered at pH 7.1. By layering the material to be centrifuged over a relatively large volume of a slightly denser solution the purification can be carried out in 4 or 5 centrifugations. The entire procedure can be completed in about 90 minutes. The yield as determined by measurements of desoxyribonucleic acid is about 5 per cent.The solutions contain KH2PO4, K2HPO4, NaHCO3, and sucrose. The sucrose concentration is varied to give density differences required for layering. Salt-sucrose solutions maintain a large proportion of the isolated nuclei in a nongranular condition for 6 hours at 0 °. Pure sucrose is less satisfactory for maintenance.The protein-desoxyribonucleic acid ratio for the isolated nuclei averages 5.1 with a range of 2.7 to 8.9.  相似文献   

6.
Estrogens are an important class of steroid hormones, involved in the development of brain, skeletal, and soft tissues. These hormones influence adult behaviors, endocrine state, and a host of other physiological functions. Given the recent cloning of a second estrogen receptor (ER) cDNA (the ERβ), work on alternate spliced forms of ERα, and the potential for membrane estrogen receptors, an animal with a null background for ERα function is invaluable for distinguishing biological responses of estrogens working via the ERα protein and those working via another ER protein. Data generated to date, and reviewed here, indicate that there are profound ramifications of the ERα disruption on behavior and neuroendocrine function. First, data on plasma levels of estradiol (E2), testosterone (T), and luteinizing hormone (LH) in wild-type (WT) versus ERαmice confirm that ERα is essential in females for normal regulation of the hypothalamic–pituitary gonadal axis. Second, ovariectomized female ERαmice do not display sexual receptivity when treated with a hormonal regime of estrogen and progesterone that induces receptivity in WT littermates. Finally, male sexual behaviors are disrupted in ERαanimals. Given decades of data on these topics our findings may seem self-evident. However, these data represent the most direct test currently possible of the specific role of the ERα protein on behavior and neuroendocrinology. The ERαmouse can be used to ascertain the specific functions of ERα, to suggest functions for the other estrogen receptors, and to study indirect effects of ERα on behavior via actions on other receptors, neurotransmitters, and neuropeptides.  相似文献   

7.
We have studied the structural and viscoelastic properties of assembling networks of the extracellular matrix protein type-I collagen by means of phase contrast microscopy and rotating disk rheometry. The initial stage of the assembly is a nucleation process of collagen monomers associating to randomly distributed branched clusters with extensions of several microns. Eventually a sol-gel transition takes place, which is due to the interconnection of these clusters. We analyzed this transition in terms of percolation theory. The viscoelastic parameters (storage modulus G′ and loss modulus G″) were measured as a function of time for five different frequencies ranging from ω = 0.2 rad/s to 6.9 rad/s. We found that at the gel point both G′ and G″ obey a scaling law , with the critical exponent Δ = 0.7 and a critical loss angle being independent of frequency as predicted by percolation theory. Gelation of collagen thus represents a second order phase transition.  相似文献   

8.
We report a novel connection between nuclear pore complexes (NPCs) and spindle pole bodies (SPBs) revealed by our studies of the Saccharomyces cerevisiae NDC1 gene. Although both NPCs and SPBs are embedded in the nuclear envelope (NE) in yeast, their known functions are quite distinct. Previous work demonstrated that NDC1 function is required for proper SPB duplication (Winey, M., M.A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. J. Cell Biol. 122:743–751). Here, we show that Ndc1p is a membrane protein of the NE that localizes to both NPCs and SPBs. Indirect immunofluorescence microscopy shows that Ndc1p displays punctate, nuclear peripheral localization that colocalizes with a known NPC component, Nup49p. Additionally, distinct spots of Ndc1p localization colocalize with a known SPB component, Spc42p. Immunoelectron microscopy shows that Ndc1p localizes to the regions of NPCs and SPBs that interact with the NE. The NPCs in ndc1-1 mutant cells appear to function normally at the nonpermissive temperature. Finally, we have found that a deletion of POM152, which encodes an abundant but nonessential nucleoporin, suppresses the SPB duplication defect associated with a mutation in the NDC1 gene. We show that Ndc1p is a shared component of NPCs and SPBs and propose a shared function in the assembly of these organelles into the NE.  相似文献   

9.
10.
The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis.  相似文献   

11.
In the multinucleate fungus Ashbya gossypii, cytoplasmic microtubules (cMTs) emerge from the spindle pole body outer plaque (OP) in perpendicular and tangential directions. To elucidate the role of cMTs in forward/backward movements (oscillations) and bypassing of nuclei, we constructed mutants potentially affecting cMT nucleation or stability. Hyphae lacking the OP components AgSpc72, AgNud1, AgCnm67, or the microtubule-stabilizing factor AgStu2 grew like wild- type but showed substantial alterations in the number, length, and/or nucleation sites of cMTs. These mutants differently influenced nuclear oscillation and bypassing. In Agspc72Δ, only long cMTs were observed, which emanate tangentially from reduced OPs; nuclei mainly moved with the cytoplasmic stream but some performed rapid bypassing. Agnud1Δ and Agcnm67Δ lack OPs; short and long cMTs emerged from the spindle pole body bridge/half-bridge structures, explaining nuclear oscillation and bypassing in these mutants. In Agstu2Δ only very short cMTs emanated from structurally intact OPs; all nuclei moved with the cytoplasmic stream. Therefore, long tangential cMTs promote nuclear bypassing and short cMTs are important for nuclear oscillation. Our electron microscopy ultrastructural analysis also indicated that assembly of the OP occurs in a stepwise manner, starting with AgCnm67, followed by AgNud1 and lastly AgSpc72.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The giant cicada, Quesada gigas (Olivier) (Hemiptera: Cicadidae), is an important coffee pest and information about the behavior and reproduction of this species, e.g. emergence, senescence and ovarian maturation status, can be valuable to understand giant cicada ecology and to improve the use of a sound trap as a control method. A great number of Q. gigas adult males and females was captured using a sound trap and a protandrous type of emergence possibly associated with chorus centers formation was observed. All giant cicadas collected until 14–15 days after the beginning of male emergence (DAME) had immature ovaries at two different years of evaluation. On the other hand, the majority of cicadas collected from 20 until 48 DAME had mature ovaries with visible chorionated oocytes. Despite the use of the sound trap to collect insects for ecological studies, we believe that next generations of Q. gigas can be reduced by using this sound trap to hinder the formation of giant cicada chorus centers, to reduce male availability to copulate with females and to reduce the number of females to oviposit in coffee plants.  相似文献   

19.
The embryo-transplantation technique has been used to studythe behaviour of Triticum embryos and endosperm during the courseof ageing of 1-, 2-, 3-, 4-, and 5-year-old seeds. The resultsshow that the ageing process in Triticum seeds is a progressivephenomenon. It affects both embryo and endosperm as shown by(a) the behaviour of old embryos transplanted on young endosperms,and (b) the deleterious effects of aged endosperms on youngembryos.  相似文献   

20.
Dietary restriction (DR) has many beneficial effects, but the detailed metabolic mechanism remains largely unresolved. As diet is essentially related to metabolism, we investigated the metabolite profiles of urines from control and DR animals using NMR and LC/MS metabolomic approaches. Multivariate analysis presented distinctive metabolic profiles and marker signals from glucuronide and glycine conjugation pathways in the DR group. Broad profiling of the urine phase II metabolites with neutral loss scanning showed that levels of glucuronide and glycine conjugation metabolites were generally higher in the DR group. The up-regulation of phase II detoxification in the DR group was confirmed by mRNA and protein expression levels of uridinediphospho-glucuronosyltransferase and glycine-N-acyltransferase in actual liver tissues. Histopathology and serum biochemistry showed that DR was correlated with the beneficial effects of low levels of serum alanine transaminase and glycogen granules in liver. In addition, the Nuclear factor (erythroid-derived 2)-like 2 signaling pathway was shown to be up-regulated, providing a mechanistic clue regarding the enhanced phase II detoxification in liver tissue. Taken together, our metabolomic and biochemical studies provide a possible metabolic perspective for understanding the complex mechanism underlying the beneficial effects of DR.It has been known for more than 70 years that dietary restriction (DR)1 can extend the life span and delay the onset of age-related diseases, based on an early rodent study showing such effects (1). However, not until the 1980s was DR recognized as a good model for studying the mechanism of or inhibitory measures for aging (2). So far, extensive studies employing model organisms such as yeasts, nematodes, fruit flies, and rodents have shown that DR has beneficial effects in most of the species studied (for a review, see Ref. 3). Most notably, a recent 20-year-long study showed that monkeys, the species closest to humans, also benefit from DR similarly (4). Although there has not been (or could not have been) a systematic study on the effects of DR on the human life span, several longitudinal studies strongly suggest that changes in dietary intake can affect the life span and/or disease-associated marker values greatly (57).This inverse correlation between dietary intake and long-term health strongly indicates that DR''s effects should involve metabolism, and that DR elicits the reorganization of metabolic pathways. It also seems quite natural that something we eat should affect the body''s metabolism. Despite this seemingly straightforward relationship between diet and metabolism, the mechanisms underlying the beneficial effects of DR are anything but simple. Intensive efforts, spanning decades, to understand the mechanisms of DR have identified several genes that might mediate the effects of DR, such as mTOR, IGF-1, AMPK, and SIRT1 (for a review, see Ref. 8). Still, most of them are involved in early nutrient-sensing steps, and specific metabolic pathways, especially those at the final steps actually responsible for the effects of DR, are largely unknown.This might be at least partially due to the fact that previous studies have focused mostly on genomic or proteomic changes induced by DR, instead of looking at changes in metabolism or metabolites directly. Metabolomics, which has gained much interest in recent years (911), might be a good alternative for addressing the mechanistic uncertainty of DR''s effects, with the direct profiling of metabolic changes elicited by environmental factors. In contrast to genomics or proteomics, which often employ DNA or proteins extracted from particular tissues, metabolomics studies mostly employ body fluids (i.e. urine or blood), which can reflect the metabolic status of multiple organs, enabling investigations at a more systemic level. In particular, urine has been used extensively to study the mechanism of external stimuli (i.e. drugs or toxic insults) at most major target organs, such as the lung, kidney, liver, or heart (1218). Still, metabolomics studies of DR effects have been very limited. A few previous ones reported the changes in phenomenological urine metabolic markers with DR, without identification and/or validation of specific metabolic pathways reflected at the actual tissue or enzyme level (19, 20). Therefore, those studies fell short of providing a mechanistic perspective on DR''s effects. In addition, they employed either NMR or LC/MS approaches without validation across the two analytical platforms.Among the metabolic pathways that can directly affect the integrity of multiple organs, and hence long-term health, are phase II detoxification pathways (21). Typically, lipophilic endo/xenobiotics are metabolized first by a phase I system, such as cytochrome P450, which modifies the compounds so that they have hydrophilic functional groups for increased solubility. In many cases, though, these modifications might increase the reactivity of the compounds, leading to cellular damage. The phase II detoxification systems involve conjugation reactions that attach charged hydrophilic molecular moieties to reactive metabolites, thus facilitating the elimination of the harmful metabolites from body, ultimately reducing their toxicity (22). These systems are thus especially important in protecting cellular macromolecules, such as DNA and proteins, from reactive electrophilic or nucleophilic metabolites. The enzymes involved in these processes include glutathione-S-transferase (GST), sulfotransferase, glycine-N-acyltransferase (GLYAT), and uridinediphospho-glucuronosyltransferase (UGT), with the last enzyme being the most prevalent (23). The beneficial effects of phase II reactions have been particularly studied in relation to the mechanism of healthy dietary ingredients. It is well believed that many such foods can prevent cancers (hence the term “chemoprevention”) by inducing phase II detoxification systems (2426). Although DR also substantially reduces the incidence of cancers, the exact mechanism remains elusive.Here, we employed multi-platform metabolomics to obtain metabolic perspectives on the beneficial effects of DR on rats. Our results about urine metabolomics markers suggest that DR enhances the phase II detoxification pathway, which was confirmed by means of conjugation metabolite profiling and changes in mRNA/protein expression levels of phase II enzymes in actual liver tissues. A possible molecular mechanism was also addressed through the exploration of Nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway activation upon DR. We believe the current study provides new metabolic insights into DR''s beneficial effects, as well as a workflow for studying DR''s effects from a metabolic perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号