首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca2+, which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca2+ chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca2+ and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca2+ increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca2+-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.  相似文献   

2.
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), a bioactive flavonoid isolated from Cleistocalyx operculatus (Roxb.) Merr and Perry (Myrtaceae) exhibits significant anti-cancer effects and has received great attention recently. In this work, a new endophytic DMCproducing fungus, Ceriporia lacerata DMC1106, was isolated from the bud of C. operculatus. Its identity was confirmed based on rDNA ITS sequences (ITS1 and ITS2 regions and the intervening 5.8S rDNA region) and phylogenetic analysis. Furthermore, statistical screening designs were applied to identify significant medium variables for DMC production and to find their optimal levels. The difference between the optimized medium and the original medium suggested that L-phenylalanine, magnesium ion and oxalic acid might be attributed to the enhancement of DMC production. Compared with the initial medium, the production of DMC was increased 6-fold in optimum medium. These results demonstrated that the endophytic fungus Ceriporia lacerata DMC1106 has potential applications for DMC production.  相似文献   

3.
4.
5.
α-Mangostin is a dietary xanthone that has been shown to have anti-cancer and anti-proliferative properties in various types of human cancer cells. This study investigates the molecular mechanism of the apoptosis-inducing effects of α-mangostin on human hepatocellular carcinoma (HCC) cells. We observed that α-mangostin reduces the viability of HCC cells in a dose- and time-dependent manner. α-Mangostin mediated apoptosis of SK-Hep-1 cells is accompanied by nuclear chromatin condensation and cell cycle arrest in the sub-G1 phases as well as phosphatidylserine exposure. Furthermore, α-mangostin triggered the mitochondrial caspase apoptotic pathway, as indicated by the loss of mitochondrial membrane potential, the release of cytochrome c from mitochondria, and the regulation of B cell lymphoma 2 family member expression. Moreover, α-mangostin inhibited a sustained activation of p38 mitogen-activated protein kinase (MAPK) phosphorylation, and treatment with a p38 MAPK inhibitor enhanced α-mangostin-induced caspase activation and apoptosis in SK-Hep-1 cells. In vivo xenograft mice experiments revealed that α-mangostin significantly reduced tumor growth and weight in mice inoculated with SK-Hep-1 cells. These findings demonstrate that α-mangostin induces mitochondria-mediated apoptosis through inactivation of the p38 MAPK signaling pathway and that α-mangostin inhibits the in vivo tumor growth of SK-Hep-1 xenograft mice.  相似文献   

6.
Prostaglandins (PGs), important modulators in bone biology, may also contribute to tumor formation and progression in human osteosarcoma. 15-Deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)), a metabolite of PGD(2) and PPARγ-ligand, exerts a panel of biological activities via receptor-dependent and -independent mechanisms. As inducible cyclooxygenase-2 (Cox-2) is a candidate inflammatory marker in human osteosarcoma and a rate-limiting enzyme in PG biosynthesis, this study aimed at investigating intracellular redox status and signaling cascades leading to Cox-2 induction in human MG-63 osteosarcoma cells. 15d-PGJ(2) induced the accumulation of reactive oxygen species (ROS) that in turn may lead to upregulation of Cox-2 via two different routes in a PPARγ-independent manner. First, phosphorylation of p38 MAPK directly enhances Cox-2 expression by promoting mRNA stability. Second, 15d-PGJ(2) induces activation of epidermal growth factor receptors and downstream activation of Cox-2 via phosphorylation of p42/44 MAPK. Glutathione precursor molecules reversed enhanced ROS levels and Cox-2 expression. Functional activity of Cox-2 expression was tested by measurement of PGE(2) and PGF(2α). The synthetic compound 9,10-dihydro-15d-PGJ(2) lacking the α,β-unsaturated carbonyl group in the cyclopentenone ring did not exhibit the cellular responses observed with 15d-PGJ(2). We conclude that the electrophilic carbon atom of 15d-PGJ(2) is responsible for alterations in intracellular redox status and Cox-2 expression.  相似文献   

7.
The antitumor effects and molecular mechanism of NPC-16, a novel naphthalimide–polyamine conjugate, were evaluated in HepG2 cells and Bel-7402 cells. Apoptosis and necrosis were evaluated by Annexin V-FITC detection kit, and autophagy by acridine orange and Lyso-Tracker Red staining. The change of mitochondrial transmembrane potential was measured using rhodamine 123 staining. The protein expression of Beclin 1, LC3 II and mTOR, p70S6 K, 14-3-3, caspase, and Bcl-2 family members was detected by immunofluorescence assays and Western Blot. Here, we elucidated the nature of cellular response of HepG2 cells and Bel-7402 cells to NPC-16 at IC50. NPC-16 induced caspase-dependent apoptosis via the mitochondrial pathway and death receptor pathway in Bel-7402 cells. Differently, NPC-16 triggered HepG2 cells both apoptosis and autophagy, further autophagy facilitated cellular apoptosis. Furthermore, mTOR signal pathway was involved in NPC-16-mediated autophagy in HepG2 cells. Thus, NPC-16 may be useful as a potential template for investigation the molecular mechanism of naphthalimide–polyamine conjugate against hepatocellular carcinoma.  相似文献   

8.
9.
10.
Efforts to identify potent small molecule inhibitors of Helicobacter pylori led to the evaluation of 23 3′,4′,5′-trimethoxychalcone analogues. Some of the compounds displayed potent antibacterial activity against H. pylori. Three most active and selective compounds 1, 7, and 13 also showed the bactericide activity against the reference as well as multidrug-resistant strains of H. pylori. Additionally, the aforementioned three compounds potentially inhibited the H. pylori adhesion and invasion to human gastric epithelial (AGS) cells. Furthermore, these selective compounds inhibited the H. pylori-induced gastric inflammation by reduced inflammatory mediator’s nuclear factor kappa B activation, and the secretion of interleukin-8.  相似文献   

11.
The anticancer effects of α-santalol, a major component of sandalwood oil, have been reported against the development of certain cancers such as skin cancer both in vitro and in vivo. The primary objectives of the current study were to investigate the cancer preventive properties of α-santalol on human prostate cancer cells PC-3 (androgen independent and P-53 null) and LNCaP (androgen dependent and P-53 wild-type), and determine the possible mechanisms of its action. The effect of α-santalol on cell viability was determined by trypan blue dye exclusion assay. Apoptosis induction was confirmed by analysis of cytoplasmic histone-associated DNA fragmentation using both an apoptotic ELISA kit and a DAPI fluorescence assay. Caspase-3 activity was determined using caspase-3 (active) ELISA kit. PARP cleavage was analyzed using immunoblotting. α-Santalol at 25-75 μM decreased cell viability in both cell lines in a concentration and time dependent manner. Treatment of prostate cancer cells with α-santalol resulted in induction of apoptosis as evidenced by DNA fragmentation and nuclear staining of apoptotic cells by DAPI. α-Santalol treatment also resulted in activation of caspase-3 activity and PARP cleavage. The α-santalol-induced apoptotic cell death and activation of caspase-3 was significantly attenuated in the presence of pharmacological inhibitors of caspase-8 and caspase-9. In conclusion, the present study reveals the apoptotic effects of α-santalol in inhibiting the growth of human prostate cancer cells.  相似文献   

12.
13.
2′-epi-2′-O-Acetylthevetin B (GHSC-74) is a cardiac glycoside isolated from the seeds of Cerbera manghas L. We have demonstrated that GHSC-74 reduced the viability of HepG2 cells in a time- and dose-dependent manner. The present study was designed to explore cellular mechanisms whereby GHSC-74 led to cell cycle arrest and apoptosis in HepG2 cells. Cell cycle flow cytometry demonstrated that HepG2 cells treated with GHSC-74 (4 μM) resulted in S and G2 phase arrest in a time-dependent manner, as confirmed by mitotic index analysis. G2 phase arrest was accompanied with down-regulation of CDC2 and Cyclin B1 protein. Furthermore, GHSC-74-induced apoptotic killing, as demonstrated by DNA fragmentation, DAPI staining, and flow cytometric detection of sub-G1 DNA content in HepG2 cells. GHSC-74 treatment resulted in a significant increase in reactive oxygen species, activation of caspase-9, dissipation of mitochondrial membrane potential, and translocation of apoptosis-inducing factor (AIF) from the mitochondrion to the nucleus in HepG2 cells. Nevertheless, after GHSC-74 exposure, no significant Fas and FasL up-regulation was observed in HepG2 cells by flow cytometry. In addition, treatment with antioxidant N-acetyl-l-cysteine (NAC) and broad-spectrum caspase inhibitor z-VAD-fmk partially prevented apoptosis but did not abrogate GHSC-74-induced nuclear translocation of AIF. In conclusion, we have demonstrated that GHSC-74 inhibited growth of HepG2 cells by inducing S and G2 phase arrest of the cell cycle and by triggering apoptosis via mitochondrial disruption including both caspase-dependent and -independent pathways, and ROS generation.  相似文献   

14.
15.
16.
17.
In the course of characterization of glycolipid sulfotransferase from human renal cancer cells, the manner of inhibition of sulfotransferase activity with pyridoxal 5-phosphate was investigated. Incubation of a partially purified sulfotransferase preparation with pyridoxal 5-phosphate followed by reduction with NaBH4 resulted in an irreversible inactivation of the enzyme. When adenosine 3-phosphate 5-phosphosulfate was co-incubated with pyridoxal 5-phosphate, the enzyme was protected against this inactivation. Furthermore, pyridoxal 5-phosphate was found to behave as a competitive inhibitor with respect to adenosine 3-phosphate 5-phosphosulfate with aK i value of 287 µm. These results suggest that pyridoxal 5-phosphate modified a lysine residue in the adenosine 3-phosphate 5-phosphosulfate-recognizing site of the sulfotransferase.  相似文献   

18.
Comparison of Ca2+ uptake by isolated mouse liver mitochondria, and mitochondria prepared from mastocytoma cells grown with and without N6,O2'-dibutyryladenosine 3',5' cyclic monophosphate (DB cyclic AMP) and theophylline showed several differences in their capacity to take up and retain calcium. In particular mitochondria from DB cyclic AMP-treated mastocytoma cells took up more Ca2+ than mitochondria from untreated mastocytoma cells. Ca2+ uptake by mitochondria from DB cyclic AMP-treated cells was also increased in the presence of oxalate whereas oxalate did not affect Ca2+ uptake by mitochondria from untreated mastocytoma cells and it reduced Ca2+ uptake by mouse liver mitochrondria. The results suggest that inhibiting the growth of mastocytoma cells with DB cyclic AMP alters their mitochondrial Ca2+ metabolism.  相似文献   

19.
(−)-Epigallocatechin gallate (EGCG), a green tea catechin, acts as a synergist with various anticancer drugs, including retinoids. Am80 is a synthetic retinoid with a different structure from all-trans-retinoic acid: Am80 is now clinically utilized as a new drug for relapsed and intractable acute promyelocytic leukemia patients. Our experiments showed that the combination of EGCG and Am80 synergistically induced both apoptosis in human lung cancer cell line PC-9 and up-regulated expressions of growth arrest and DNA damage-inducible gene 153 (GADD153), death receptor 5, and p21waf1 genes in the cells. To understand the mechanisms of synergistic anticancer activity of the combination, we gave special attention to the lysine acetylation of proteins. Proteomic analysis using nanoLC-ESI-MS/MS revealed that PC-9 cells treated with the combination contained 331 acetylated proteins, while nontreated cells contained 553 acetylated proteins, and 59 acetylated proteins were found in both groups. Among them, the combination increased acetylated-p53 and acetylated-α-tubulin through reduction of histone deacetylase (HDAC) activity in cytosol fraction, although the levels of acetylation in histones H3 or H4 did not change, and the combination reduced protein levels of HDAC4, −5 and −6 by 20% to 80%. Moreover, we found that a specific inhibitor of HDAC4 and −5 strongly induced p21waf1 gene expression, and that of HDAC6 induced both GADD153 and p21waf1 gene expression, which resulted in apoptosis. All results demonstrate that EGCG in combination with Am80 changes levels of acetylation in nonhistone proteins via down-regulation of HDAC4, −5 and −6 and stimulates apoptotic induction.  相似文献   

20.
1-(3′,4′,5′-Trimethoxyphenyl)-3-(3″,4″-dimethoxy-2″-hydroxyphenyl)-propane (DP), a novel synthesized 1,3-diarylpropanes compound, showed growth inhibitory effect on human hepatoma HepG2 cells in a concentration-dependent manner. The growth inhibitory effect of DP on HepG2 cells was associated with microtubule depolymerization, G2/M phase arrest and apoptosis induction. The G2/M phase arrest induced by DP resulted from its microtubule-depolymerizing ability, and DP-treated HepG2 cells finally underwent caspase-dependent apoptosis. DP increased the levels of death receptor 4 (DR4), death receptor 5 (DR5) and pro-apoptotic protein Bax, but decreased the levels of anti-apoptotic protein Bcl-2. Meanwhile, the decrease in the mitochondrial membrane potential (MMP) and the release of cytochrome c from mitochondria were observed in DP-treated HepG2 cells. DP increased the levels of reactive oxygen species (ROS) in HepG2 cells, and antioxidant N-acetylcysteine (NAC) completely blocked DP-induced ROS accumulation and the disruption of the balance between Bax and Bcl-2 proteins, and effectively blocked the decreased MMP and apoptosis, but had no effect on the activation of caspase-8 and the up-regulations of DR4 and DR5 induced by DP. These results suggest that DP induces G2/M phase arrest through interruption of microtubule network followed by the death receptor- and ROS-mediated apoptosis in HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号