共查询到20条相似文献,搜索用时 15 毫秒
1.
Wagers AJ 《Cell Stem Cell》2012,10(4):362-369
Stem cells are fundamental units for achieving regenerative therapies, which leads naturally to a theoretical and experimental focus on these cells for therapeutic screening and intervention. A growing body of data in many tissue systems indicates that stem cell function is critically influenced by extrinsic signals derived from the microenvironment, or "niche." In this vein, the stem cell niche represents a significant, and largely untapped, entry point for therapeutic modulation of stem cell behavior. This Perspective will discuss how the niche influences stem cells in homeostasis, in the progression of degenerative and malignant diseases, and in therapeutic strategies for tissue repair. 相似文献
2.
3.
Sanchez-Martin M 《Current stem cell research & therapy》2008,3(3):197-207
The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine. 相似文献
4.
Pluripotent stem cells (PSCs) are cells that can differentiate into any type of cells in the body, therefore have valuable promise in regenerative medicine of cell replacement therapies and tissue/organ engineering. PSCs can be derived either from early embryos or directly from somatic cells by epigenetic reprogramming that result in customized cells from patients. Here we summarize the methods of deriving PSCs, the various types of PSCs generated with different status, and their versatile applications in both clinical and embryonic development studies. We also discuss an intriguing potential application of PSCs in constructing tissues/organs in large animals by interspecies chimerism. All these emerging findings are likely to contribute to the breakthroughs in biological research and the prosperous prospects of regenerative medicine. 相似文献
5.
6.
S. V. Pinchuk I. B. Vasilevich Z. B. Kvacheva I. D. Volotovski 《Cell and Tissue Biology》2016,10(5):357-364
Human adipose-derived mesenchymal stem cells (MSCs) can be stimulated to differentiate into hepatic cells. MSC differentiation was induced by fibroblast growth factor-4, hepatocyte growth factor, oncostatin M, and dexamethasone. The influence of quercetin on MSC hepatic differentiation in culture was assayed, and 1 or 10 μmole/L quercetin added into the induction medium enhanced the manifestation of MSC hepatic differentiation. Urea secretion, cytokeratin 19 expression, and α-fetoprotein synthesis were increased. Quercetin modulated CYP1A–cytochrome P450 activity in the differentiated cells. MSCs differentiated in the presence of quercetin exhibited higher viability and resistance to oxidative stress. 相似文献
7.
Hepatocyte transplantation is considered a potential treatment for liver diseases and a bridge for patients awaiting liver transplantation, but its application has been hampered by a limited supply of hepatocytes. Embryonic stem (ES) cells established from early mouse and human embryos are pluripotent, and proliferate indefinitely in an undifferentiated state in vitro. Since differentiation from ES cells seems to recapitulate early embryonic development, if hepatocytes could be efficiently generated in vitro, ES cells might become a source of transplantable hepatocytes for cell replacement therapy. Hepatocytes have been generated from ES cells in vitro, and the hepatocytes differentiated from ES cells have been found to express many hepatocyte-related genes and perform hepatic functions. However, it remains unclear whether the hepatocytes differentiated from ES cells are derived from definitive endoderm or primitive endoderm. Because visceral endoderm, which expresses many hepatocyte-related genes, is derived from primitive endoderm and is fated to form extraembryonic yolk sac tissues, not to form hepatocytes, ES cells must be directed to a definitive endoderm lineage in vitro. This article discusses the differentiation of ES cells into hepatocytes in vitro in comparison with early embryogenesis, and describes the efficacy of ES cell-derived hepatocyte transplantation. 相似文献
8.
Surface functionalization of nanobiomaterials for application in stem cell culture,tissue engineering,and regenerative medicine
下载免费PDF全文

Deepti Rana Keerthana Ramasamy Maria Leena Constanza Jiménez Javier Campos Paula Ibarra Ziyad S. Haidar Murugan Ramalingam 《Biotechnology progress》2016,32(3):554-567
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016 相似文献
9.
10.
Widespread use of embryonic and adult stem cells for therapeutic applications will require reproducible production of large numbers of well-characterized cells under well-controlled conditions in bioreactors. During the past two years, substantial progress has been made towards this goal. Human mesenchymal stem cells expanded in perfused scaffolds retained multi-lineage potential. Mouse neural stem cells were expanded as aggregates in serum-free medium for 44 days in stirred bioreactors. Mouse embryonic stem cells expanded as aggregates and on microcarriers in stirred vessels retained expression of stem cell markers and could form embryoid bodies. Embryoid body formation from dissociated mouse embryonic stem cells, followed by embryoid body expansion and directed differentiation, was scaled up to gas-sparged, 2-l instrumented bioreactors with pH and oxygen control. 相似文献
11.
12.
The goal of regenerative medicine is to restore form and function to damaged tissues. One potential therapeutic approach involves the use of autologous cells derived from the bone marrow (bone marrow-derived cells, BMDCs). Advances in nuclear transplantation, experimental heterokaryon formation and the observed plasticity of gene expression and phenotype reported in multiple phyla provide evidence for nuclear plasticity. Recent observations have extended these findings to show that endogenous cells within the bone marrow have the capacity to incorporate into defective tissues and be reprogrammed. Irrespective of the mechanism, the potential for new gene expression patterns by BMDCs in recipient tissues holds promise for developing cellular therapies for both proliferative and post-mitotic tissues. 相似文献
13.
14.
Laure-Emmanuelle Zaragosi Brigitte Wdziekonski Coralie Fontaine Phi Villageois Pascal Peraldi Christian Dani 《BMC cell biology》2008,9(1):11
Background
Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. 相似文献15.
Science and medicine place a lot of hope in the development of stem cell research and regenerative medicine. This review will define the concept of regenerative medicine and focus on an abundant stem cell source - neonatal tissues such as the umbilical cord. Umbilical cord blood has been used clinically for over 20 years as a cell source for haematopoietic stem cell transplantation. Beyond this, cord blood and umbilical cord-derived stem cells have demonstrated potential for pluripotent lineage differentiation (liver, pancreatic, neural tissues and more) in vitro and in vivo. This promising research has opened up a new era for utilization of neonatal stem cells, now used beyond haematology in clinical trials for autoimmune disorders, cerebral palsy or type I diabetes. 相似文献
16.
17.
18.
Margarida Serra Catarina Brito Eunice M Costa Marcos FQ Sousa Paula M Alves 《BMC biotechnology》2009,9(1):82
Background
Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. 相似文献19.
- Download : Download high-res image (248KB)
- Download : Download full-size image
20.
Introduction: In vitro expansion and differentiation of mesenchymal stem cells (MSC) rely on specific environmental conditions, and investigations have demonstrated that one crucial factor is oxygen environment.
Objectives: In order to understand the impact of oxygen tension on MSC culture and chondrogenic differentiation in vitro , we developed a mathematical model of these processes and applied it in predicting optimal assays.
Methods and results: We compared ovine MSCs under physiologically low and atmospheric oxygen tension. Low oxygen tension improved their in vitro population growth as demonstrated by monoclonal expansion and colony forming assays. Moreover, it accelerated induction of the chondrogenic phenotype in subsequent three-dimensional differentiation cultures. We introduced a hybrid stochastic multiscale model of MSC organization in vitro . The model assumes that cell adaptation to non-physiological high oxygen tension reversibly changes the structure of MSC populations with respect to differentiation. In simulation series, we demonstrated that these changes profoundly affect chondrogenic potential of the populations. Our mathematical model provides a consistent explanation of our experimental findings.
Conclusions: Our approach provides new insights into organization of MSC populations in vitro. The results suggest that MSC differentiation is largely reversible and that lineage plasticity is restricted to stem cells and early progenitors. The model predicts a significant impact of short-term low oxygen treatment on MSC differentiation and optimal chondrogenic differentiation at 10–11% pO2 . 相似文献
Objectives: In order to understand the impact of oxygen tension on MSC culture and chondrogenic differentiation in vitro , we developed a mathematical model of these processes and applied it in predicting optimal assays.
Methods and results: We compared ovine MSCs under physiologically low and atmospheric oxygen tension. Low oxygen tension improved their in vitro population growth as demonstrated by monoclonal expansion and colony forming assays. Moreover, it accelerated induction of the chondrogenic phenotype in subsequent three-dimensional differentiation cultures. We introduced a hybrid stochastic multiscale model of MSC organization in vitro . The model assumes that cell adaptation to non-physiological high oxygen tension reversibly changes the structure of MSC populations with respect to differentiation. In simulation series, we demonstrated that these changes profoundly affect chondrogenic potential of the populations. Our mathematical model provides a consistent explanation of our experimental findings.
Conclusions: Our approach provides new insights into organization of MSC populations in vitro. The results suggest that MSC differentiation is largely reversible and that lineage plasticity is restricted to stem cells and early progenitors. The model predicts a significant impact of short-term low oxygen treatment on MSC differentiation and optimal chondrogenic differentiation at 10–11% pO