首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Steroid production and enzyme activities were examined in preparations of whole testis tissue, isolated interstitial tissue and seminiferous tubules obtained from adult rats with intact pituitaries receiving daily subcutaneous injections of 100 I.U. human chorionic gonadotropin for 5 days and from control animals. After human chorionic gonadotropin administration testosterone concentrations were increased in total homogenates of whole testis tissue, interstitial tissue and seminiferous tubules. The testosterone production from endogenous precursors was enhanced only in total homogenates of whole testis tissue and interstitial tissue obtained from testes of human chorionic gonadotropin-treated rats. The production of testosterone in the corresponding homogenates of isolated seminiferous tubules was very low. The specific activity of 3 beta-hydroxysteroid dehydrogenase was increased in total homogenates of whole testis tissue, isolated interstitial tissue and seminiferous tubules. No effect was observed on the specific activities of marker enzymes such as cytochrome c oxidase, monoamine oxidase, steroid sulfatase and lactate dehydrogenase, whereas the specific activities of carboxyl esterase were decreased in homogenates of whole testis tissue and interstitial tissue. Total activity of monoamine oxidase was increased in homogenates of interstitial tissue of tests from human chorionic gonadotropin treated rats. After the same prolonged human chorionic gonadotropin treatment the concentration of pregnenolone was increased in mitochondrial fractions of whole testis tissue, interstitial tissue and seminiferous tubules, and the amount of protein isolated in the mitochondrial fraction of interstitial tissue increased by 40%. Steroid production (estimated as pregnenolone) from endogenous precusors by mitochondrial fractions of whole testis tissue and interstitial tissue were increased after human chorionic gonadotropin treatment, for whole testis from 580 pmol/mg mitochondrial protein per h to 1420 pmol/mg per h; and for interstitial tissue from 2665 pmol/mg per h to 7050 pmol/mg per h. The production of pregnenolone in mitochondrial fractions obtaine from isolated seminiferous tubules was very low and contributed hardly at all to the total pregnenolone production in mitochondrial fractions of whole testis tissue from normal rats as well as from human chorionic gonadotropin-treated rats.  相似文献   

2.
The effect of Ca2+ in vitro on pregnenolone production rates under various incubation conditions by mitochondrial fractions fractions isolated from testes of normal rats and of rats after in vivo treatment with luteinizing hormone has been investigated. Concentrations of Ca2+ in the range of 0.1–0.5 mM stimulated succinate supported pregnenolone production in mitochondrial fractions from both control and luteinizing hormone treated testes. When mitochondrial fractions were isolated in 0.25 M sucrose without additions, Ca2+ in vitro increased succinate supported pregnenolone production rates in mitochondrial fractions isolated from control testes to a greater extent than in mitochondrial fractions, from luteinizing hormone treated testes. Production rates in control mitochondrial fractions, incubated in the presence of initial Ca2+ concentrations of 0.7 mM and higher were almost similar to production rates in relevant luteinizing hormone treated mitochondria.Pregnenolone production from endogenous substrates in mitochondrial fractions isolated in 0.25 M sucrose from control and luteinizing hormone treated testes incubated in the absence of added succinate and Ca2+, was maintained during 10–20 min.After longer incubation times no further steroid synthesis took place. Addition of 0.5 mM Ca2+ to the incubation medium at time zero slightly stimulated initial pregnenolone production rates in control mitochondrial fractions, but had no effect during prolonged incubations. Addition of 0.5 mM Ca2+ to mitochondrial fractions isolated from luteinizing hormone treated glands showed no effect either on initial production rate or during prolonged incubations.Pregnenolone production rates were maintained during 90 min in the presence of 20 mM succinate in the incubation medium. Under such conditions production rates during the first 20 min in mitochondrial fractions obtained from luteinizing hormone treated glands were approx. 3 times higher than in relevant control samples. Addition of 0.5 mM Ca2+ to the incubation medium containing 20 mM succinate markedly stimulated initial pregnenolone production rates in control mitochondrial fractions, but gave only a small stimulation of succinate-supported production rates in luteinizing hormone treated testicular mitochondrial fractions. These results indicate that Ca2+ in vitro can mimic the trophic effect of luteinizing hormone in vivo on mitochondrial pregnenolone production.Ageing of mitochondrial protein for 60 min at 33°C resulted in a marked increase in pregnenolone production rates in mitochondrial fractions obtained from control testes. The same treatement hardly influenced production rates in mitochondrial fractions isolated from luteinizing hormone treated testes. Ageing may have an effect on the ultrastructure of freshly prepared mitochondria, causing a change in the amount of cholesterol readily available for the enzyme complex.The gluco- and mucoprotein specific agent Ruthenium red (50–2000 ng/ml) did not inhibit pregnenolone production in either control or hormone treated testicular mitochondrial fractions, incubated in the absence of added Ca2+. the presence of 200–2000 ng Ruthenium red per ml incubation mixture.The present results have been discussed in relation to the possible involvement of Ca2+ in the molecular mechanism of short-term action of luteinizing hormone on testicular androgen production.  相似文献   

3.
The effect of Ca2+ in vitro on pregnenolone production rates under various incubation conditions by mitochondrial fractions isolated from testes of normal rats and of rats after in vivo treatment with luteinizing hormone has been investigated. Concentrations of Ca2+ in the range of 0.1-0.5 mM stimulated succinate supported pregnenolone production in mitochondrial fractions from both control and luteinizing hormone treated testes. When mitochondrial fractions were isolated in 0.25 M sucrose without additions, Ca2+ in vitro increased succinate supported pregnenolone production rates in mitochondrial fractions isolated from control testes to a greater extent than in mitochondrial fractions, from luteinizing hormone treated testes. Production rates in control mitochondrial fraction, incubated in the presence of initial Ca2+ concentrations of 0.7 mM and higher were almost similar to production rates in relevant luteinizing hormone treated mitochondria.  相似文献   

4.
The rate limiting step in the production of steroids in the testis is the mitochondrial conversion of cholesterol to pregnenolone. This conversion can be stimulated by lutropin, but the precise interaction between lutropin-induced cytoplasmic factors and the mitochondrial activity in steroid production is as yet unknown. The results described in the present paper concern the steroid production of isolated mitochondrial fractions in recombination experiments with isolated supernatant fractions from total testes homogenates. Cyanoketone as well as SU-10603, an inhibitor of steroid 17α-hydroxylase activity are required to block pregnenolone metabolism. The results show that the cytoplasm contains lutropin-induced factor(s) which can exert its effect in vitro on the cholestorel side-chain cleavage activity in intact mitochondria isolated from control testes.  相似文献   

5.
Luteinizing-hormone-stimulated testosterone biosynthesis was inhibited by cycloheximide during incubation of rat testis intersitial tissue in vitro and also by puromycin and cycloheximide during incubation of Leydig-cell preparations, but not by chloramphenicol. These results suggest that a protein regualtor(s) formed by cytoplasmic protein synthesis is involved in steroidogenesis in the rat testis. The specific effect of cycloheximide and puromycin on protein synthesis rather than on other non-specific processes is suggested by the inhibition of protein synthesis and steroidogenesis with different doses of the inhibitors and the lack of effect of cycloheximide on luteinizing-hormone-induced adenosine 3':5'-cyclic monophosphate production. Stimulation of testosterone production by luteinizing hormone during superfusion of interstitial tissue was detectable within 10-20 min and reached a maximum of 120 min, and thereafter slowly decreased. Cycloheximide added at maximum steroid production caused a rapid decrease in testosterone synthesis which followed first-order kinetics (half-life 13 min), thus indicating that the protein regulator(s) has a short half-life. No effect of cycloheximide, puromycin or chloramphenicol on testosterone production in the absence of added luteinizing hormone was found, suggesting that the basal production of testosterone is independent of protein synthesis.  相似文献   

6.
D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/-3.6 nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was 155.25+/-21.9 nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.  相似文献   

7.
Small pieces (10-20 mg) of human testis tissue were incubated for 4 h in the presence or absence of hCG and 8-bromo-cAMP and the concentrations of testosterone, some of its steroidal precursors, and their sulphates were measured by radioimmunoassays. The results showed, we believe for the first time, that the production of steroid sulphates as well as of unconjugated steroids can be stimulated in human testis tissue in vitro and they confirm earlier observations in vivo which suggested that testicular production of steroid sulphates can be stimulated by hCG.  相似文献   

8.
Leydig-cell suspensions, prepared from rat testes, were incubated with different amounts of Ca2+ with and without added luteinizing hormone. The basal testosterone production in the absence of luteinizing hormone was unaffected by the Ca2+ concentration in the incubation medium. The luteinizing hormone-stimulated testosterone production, however, was progressively decreased in the absence of Ca2+ to one-third of that with 2.50 mM-Ca2+. This decrease in luteinizing hormone-stimulated testosterone production was independent of the different concentrations of luteinizing hormone (0-10mug/ml) used and could be restored by the addition of Ca2+ to the incubation medium. The restoration of the stimulation was achieved within 30 min after the addition of Ca2+ to the medium. Activation of cyclic AMP-dependent protein kinase by luteinizing hormone was not decreased by omission of Ca2+ from the incubation medium, suggesting that Ca2+ may be involved in steroidogenesis at a stage beyond the luteinizing hormone receptor-adenylate cyclase-protein kinase system.  相似文献   

9.
Methods have been established and validated for quantitative assessment of the distribution of testosterone in the testis, by measurement of testosterone concentrations in whole testis, in isolated seminiferous tubules and in testicular interstitial fluid. These measurements were made in individual rats injected 2-40 h previously with saline (0.9% NaCl) or a potent antiserum to ovine LH. Testosterone concentrations in interstitial fluid and seminiferous tubules were closely correlated (r = +0.98; n = 60) and their relationship was log linear over a 200-fold range. However, although the concentrations of testosterone in interstitial fluid and seminiferous tubules decreased progressively with time after LH antiserum injection, this decrease was far more pronounced for interstitial fluid. In association with this change there was a significant increase in the amounts of a locally-produced factor in interstitial fluid which stimulates basal and hCG-stimulated testosterone production by isolated purified Leydig cells. This increase was reversed by injection of hCG but not by peripheral injection of a dose (20 mg) of testosterone propionate which restored normal intratesticular concentrations of testosterone. It is concluded that the tubular 'conservation' of testosterone, which occurs as interstitial fluid levels of this steroid decrease, may be a consequence of restricted diffusion of testosterone out of the tubules, but is also associated with increased amounts of a peptide stimulator of testosterone production.  相似文献   

10.
The in vitro regulationof the mitochondrial conversion of cholesterol to pregnenolone in rat testis tissue has been further investigated. Pregnenolone production rates by isolated mitochondrial fractions could be stimulated by the addition of cholesterol. The stimulation was always highest in mitochondria isolated from lutropin-treated testes relative to control and cycloheximide-treated testes.Additionof 20- ro 25-hydroxycholesterol resulted in a greater stimulation of pregnenolone production rates and these rates were unaffected by prior treatmetn with cycloheximide. When both cholesterol and 20- or 25-hydroxy-cholesterol were present in the incubation medium, prepgnenolone production rates were mainly influenced by the hydroxycholesterol, even in the presence of a ten-fold excess of cholesterol.Ca2+ in vitro stimulated pregnenolone production rates from endogenous cholesterol as well as from added choleterol. However, pregnenolone production rates in the presence of hydroxycholesterol were not influenced by the addition of Ca2+ in vitro.  相似文献   

11.
The mechanisms by which ethanol (EtOH, 1.5 g/kg) inhibits testicular testosterone synthesis were studied in nonstimulated and human chorionic gonadotropin (hCG, 50 IU/kg)-treated male rats. To dissociate the effects caused by ethanol metabolism, the alcohol dehydrogenase inhibitor 4-methylpyrazole (4MP, 10 mg/kg) was given to half of the rats 30 min before EtOH. The 4MP had little or no effect in the nonstimulated rats on the EtOH-induced decreases in the concentrations of serum testosterone and of the intratesticular steroids of the testosterone biosynthetic pathway measured, but reduced the EtOH-induced elevation in the intratesticular pregnenolone-to-progesterone ratio. In contrast, 4MP pretreatment markedly reversed the EtOH-induced decrease in serum and intratesticular testosterone and increase in intratesticular pregnenolone concentrations in the hCG-stimulated rats. Simultaneously, the EtOH-induced elevations in the intratesticular pregnenolone/progesterone and androstenedione/testosterone ratios were abolished. In the EtOH-treated rats whose EtOH metabolism was blocked by 4MP pretreatment, the intratesticular testosterone concentrations were negatively correlated with the elevated serum corticosterone levels. It is concluded that: (1) EtOH metabolism is involved in the inhibition of testicular steroidogenesis in vivo. This effect is pronounced during gonadotropin-stimulated conditions. Thus, previously reported "discrepancies" between the in vivo and in vitro results are clarified; (2) corticosterone seems also to be involved in the EtOH-induced inhibition of steroidogenesis. This effect is also pronounced during gonadotropin-stimulated conditions; and (3) without external gonadotropin stimulation other inhibitory mechanisms, such as decreased stimulation by luteinizing hormone, are prevalent.  相似文献   

12.
Using human term placental mitochondrial preparations, optimal conversion of [3H]pregnenolone to [3H]progesterone was obtained at 30 min incubation and with a mitochondrial protein content of 2.5-3.5 mg/ml. Estradiol, estrone, progesterone and testosterone in a dose range of 0.03-8.66 mumol inhibited the in vitro conversion of [3H]pregnenolone to [3H]progesterone by placental homogenates. All four steroids inhibited the pregnenolone to progesterone conversion in a dose-dependent manner. The ID50 (dose required to inhibit conversion of pregnenolone to progesterone by 50%) was 0.04 mumol for estradiol, 0.13 mumol for testosterone, 0.3 mumol for progesterone and 1.0 mumol for estriol. Neither gonadotropin releasing hormone (50-1000 ng) nor human chorionic gonadotropin (5-500 IU) affected the placental basal conversion rate of pregnenolone to progesterone in vitro. Our findings indicate that steroid hormones such as estradiol, estrone, testosterone and progesterone can inhibit local placental progesterone biosynthesis through inhibition of the enzyme complex 5-ene-3 beta-hydroxysteroid dehydrogenase.  相似文献   

13.
Pregnenolone, androstenedione and testosterone were identified by RIA in tissue homogenates of the pronephric region, the opisthonephros, the gonads and in plasma samples from male and female immature and mature adult brook lampreys. Additionally, hydroxysteroid dehydrogenase activity was determined spectrophotometrically in homogenates from the same tissues of mature and spent adult brook lampreys employing pregnenolone, testosterone or 3β,17β-dihydroxy-5β-androstane as substrates. The steroid levels show differences corresponding to developmental stages, tissues and sex. Remarkable quantities of testosterone were measured in the testicular tissue homogenates, in homogenates obtained from the pronephric region and in the serum.  相似文献   

14.
J Mathew  V L Sallee  J Curtis  J Mrotek 《Steroids》1985,46(2-3):697-716
Cholesterol, pregnenolone, progesterone, 11-deoxycorticosterone (11-DOC) and corticosterone were quantitated in subcellular fractions isolated from in vivo adrenocorticotropin (ACTH)-stimulated rat adrenal zona fasciculata/reticularis. Six adrenal subcellular fractions separated by discontinuous sucrose gradient centrifugation (lipid, 0.125 M sucrose, cytosolic, microsomal, mitochondrial and nuclear) were extracted with alkaline ether/ethanol and assayed by high pressure liquid chromatography (HPLC). Lipid fractions contained the major cholesterol stores, while most pregnenolone and progesterone was found in lipid, microsomal and mitochondrial fractions. The 0.125 M sucrose and cytosol fractions together contained approximately 75% of the total 11-DOC and corticosterone. The five steroids were only present in small amounts in organelle fractions containing steroidogenic enzymes. Homogenate and lipid fraction cholesterol decreased between 10 and 15 min and again 30 min after ACTH injection. In the homogenate, lipid, microsomal and mitochondrial fractions, pregnenolone and progesterone were increased after ACTH injection; peak pregnenolone and progesterone concentrations were often measured in adrenal gland sucrose, cytosolic, microsomal and mitochondrial fractions 15 to 20 min after rats were injected with ACTH. Although ACTH increased 11-DOC and corticosterone in all but the mitochondrial and nuclear fractions, the sucrose, cytosolic and microsomal 11-DOC, and cytosolic corticosterone increased most dramatically. In many fractions, peak 11-DOC and corticosterone concentrations were most often observed between the 10 and 15 min periods and again at 30 min.  相似文献   

15.
The intracellular movements of pregnenolone in rat testes were investigated. Whole testes were incubated in the presence or absence of pregnenolone (2.5 mM) in the medium for 120 min (in some studies 30, 60, and 90 min). The testes were homogenised, subcellular fractions prepared and analysed in quadruplicate for steroid content by gas chromatography–mass spectrometry with selected ion monitoring. Quantification of pregnenolone and 11 of its metabolites, obtained from non-incubated whole testes, provided values for endogenous amounts. Pregnenolone was the only steroid of quantitative importance found initially in the mitochondrial fraction but was subsequently found in the microsomal fraction, where metabolism occurred. Identification and quantification of metabolites indicated that both classical pathways for testosterone production were operating, with the 4-en-3-oxosteroid pathway predominating. By 120 min, virtually all pregnenolone metabolites, including pregnenolone itself, were found in the cytosol, consistent with an overall movement from mitochondria to endoplasmic reticulum to cytosol.  相似文献   

16.
An in vivo human chorionic gonadotropin (hCG)-receptor complex was solubilized from the subcellular fraction of ovarian and testicular tissues of rats that had been injected with 125-I-labeled hCG. The soluble hCG-receptor complex was partially characterized by Sepharose 6B chromatography in the presence of the nonionic detergent, Emulphogene, and was shown to have a molecular size of about 65 A. By this method it was also shown that the in vivo uptake of radioactivity by rat gonadal tissues represents 125-I-hCG and not the dissociated subunits or degradation products of the hormone. A soluble hCG-receptor complex isolated in vitro in approximately the same yield from both rat testicular and ovarian homogenates was shown to be the same size. The hCG-receptor appears to be specifically located in gonadal tissue; a corresponding hCG-receptor complex was not obtained from liver or kidney that incorporated significant levels of 125-I-hCG administered in vivo. Furthermore, a desialyzed hCG-receptor complex was obtained from rat testis but not liver; desialyzed hCG, like other desialyzed glycoproteins, is nonspecifically bound by rat liver homogenates. The binding of hCG and luteinizing hormone (LH) by rat testis receptor exhibits a high degree of specificity. Other glycoprotein hormones without LH activity, such as follicle-stimulating hormone and thyroid-stimulating hormone, and glycoproteins such as fetuin or alpha1-acid glycoprotein do not bind to the hCG/LH receptors. Desialyzed hCG was 2 times more effective in competing for binding to rat testis receptors than "native" hCG, indicating that caution must be exercised when the radioligand receptor assay is utilized to assay hCG preparations varying in sialic acid content.  相似文献   

17.
Steroid sulfatase (STS) activity was studied in the Long-Evans rat testis. The rate of dehydroepiandrosterone sulfate (DHA-S) hydrolysis determined in whole testis homogenates was low compared to that of the corresponding microsomal fractions, which was, in contrast, as high as that expressed in homogenates from purified Leydig cells. Such an increment in STS activity between total homogenates and the corresponding microsomes was not observed for the seminiferous tubules. The STS affinity reported for total testicular microsomes (Km = 3.47 +/- 0.54 microM; mean +/- SEM) was of the same magnitude as that previously reported for Leydig cells, but was about 3 times higher than that measured for whole testis homogenate (Km = 10.11 +/- 0.92 microM). In vivo hCG treatment decreased the STS affinity in total testicular microsomes without affecting this kinetic parameter in whole testis homogenate. These data suggest that the steroid sulfatase expressed in total testicular microsomes (activity and regulation by hCG) could be considered as a good index of Leydig cell STS activity.  相似文献   

18.
The results of the measurement of 19-nortestosterone in the testiscular artery and vein of the stallion, the very low levels of this steroid in the peripheral blood of geldings and the similar patterns of increase in the peripheral levels of 19-nortestosterone and testosterone after hCG stimulation, show that 19-nortestosterone, like testosterone, is essentially synthesized in the testis. This testicular origin was confirmed by the ability of testicular tissue to synthesize 19-norandrogens from [4-14C]androgens in vitro. 19-Nortestosterone was 50% conjugated in the peripheral blood and almost entirely conjugated after biosynthesis in vitro. The sequence of appearance of steroids in the peripheral blood after a single injection of 10,000 IU hCG suggests that, in the equine testis, 19-norandrogens are produced by a specific C10-19 desmolase (estrene synthetase), stimulable by hCG. 19-Nortestosterone was aromatized into estradiol-17 beta by stallion testicular microsomes. The affinity of the aromatase for 19-nortestosterone was very low compared to that for testosterone. At low and presumably physiological levels, and at a high testosterone/19-nortestosterone ratio, testosterone did not inhibit 19-nortestosterone aromatization by more than 53%. Thus, 19-nortestosterone may be aromatized in vivo in the testis in spite of the endogenous concentrations of androgens. However, the low velocity of 19-nortestosterone aromatization by testicular microsomes at roughly physiological concentrations suggests that 19-norandrogen aromatization may only participate slightly in the testicular estrogen production. These results suggest that in the equine testis, two aromatizing enzyme systems may exist: one which aromatizes both androgens and 19-norandrogens, and a minority system more specific for 19-norandrogens.  相似文献   

19.
The rate of synthesis of estradiol-17beta by the ovary, and of testosterone by the testis of the newborn rat have been studied in vitro using tissue homogenates. Quantitative estimation of these steroids has shown a peak of activity in the ovary between 8 and 12 days post partum of 63 pg/mg tissue/hr, compared with 6 pg/mg/hr at day 6, and 19 pg/mg/hr at day 14. Testosterone synthesis in the testis is most active on day 1 (3.1 ng/mg/hr), declining steadily to 1.1 ng/mg/hr on day 11. Adult testicular tissue under the same conditions synthesised 0.5 - 1.0 ng testosterone/mg/hr. These results are consistent with other observations which have suggested a transient period of active steroidogenesis immediately after birth in the rat, but the time during which steroid synthesis is elevated has been more clearly defined. The methods described here provide a model system for the study of synthetic steroids and other drugs which may affect the sexual differentiation of the hypothalamus by altering gonadal steroidogenesis.  相似文献   

20.
The time and dose dependence of the relationship between uptake of labelled precursors into protein and RNA and production of testosterone by rabbit follicles was examined. Although testosterone production was stimulated by luteinizing hormone at concentrations between 0.1 and 10 microgram/ml, the uptake of [3H]leucine into protein was significant only when the concentration of luteinizing hormone was greater than 2.5 microgram/ml. Increased production of testosterone was observed within 15 min of stimulation with luteinizing hormone whereas uptake of [3H]leucine was only significant at 90 min. Puromycin (40 microgram/ml) and cycloheximide (10 microgram/ml) in the presence of luteinizing hormone inhibited the synthesis of both testosterone and protein. However, lower concentrations of puromycin (0.1, 1 and 10 microgram/ml) and cycloheximide (1 microgram/ml) had no effect on luteinizing hormone-induced testosterone production but significantly inhibited protein synthesis by 58, 37, 31 and 71%, respectively. Actinomycin D (20, 80 and 160 microgram/ml) alone and in combination with 5 microgram luteinizing hormone/ml severely inhibited uptake of [3H]uridine into RNA without affecting testosterone production. However, with 1 microgram actinomycin/ml, testosterone production was significantly (P less than 0.01) greater than in the presence of luteinizing hormone alone. These results cast doubt on the obligatory role of RNA and protein synthesis in rabbit ovarian follicular steroidogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号