首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tyrosinase or polyphenol oxidase is the key enzyme in melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Our research group previously proposed a kinetic reaction mechanism for tyrosinase acting on some phenolic substrates, whose reliability was demonstrated for tyrosinases from several fruits and vegetables. A kinetic analysis and an experimental design for testing the reliability of the kinetic reaction mechanism of tyrosinase are reported. The applicability of the mechanism to the oxidation of tyramine/dopamine and L-tyrosine methyl esther/L-dopa methyl esther has been checked. Some structure/activity topics are discussed. A complete kinetic characterisation of the oxidation of these phenolic substrates has been made. This will be useful for further studies about the control of depigmenting agents, antimelanome drugs and antibrowning reagents acting on tyrosinase.  相似文献   

2.
3.
There is controversy in the literature concerning the action of tetrahydropterines on the enzyme tyrosinase and on melanogenesis in general. In this study, we demonstrate that tetrahydropterines can inhibit melanogenesis in several ways: i) by non-enzymatic inhibition involving purely chemical reactions reducing o-dopaquinone to L-dopa, ii) by acting as substrates which compete with L-tyr and L-dopa, since they are substrates of tyrosinase; and iii) by irreversibly inhibiting the enzymatic forms met-tyrosinase and deoxy-tyrosinase in anaerobic conditions. Three tetrahydropterines have been kinetically characterised as tyrosinase substrates: 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin, 6-methyl-5,6,7,8-tetrahydropterine and 6,7-(R,S)-dimethyl-5,6,7,8-tetrahydropterine. A kinetic reaction mechanism is proposed to explain the oxidation of these compounds by tyrosinase.  相似文献   

4.
The kinetic behaviour of tyrosinase is very complex because the enzymatic oxidation of monophenol and o-diphenol to o-quinones occurs simultaneously with the coupled non-enzymatic reactions of the latter. Both reaction types are included in the kinetic mechanism proposed for tyrosinase (Mechanism I [J. Biol. Chem. 267 (1992) 3801-3810]). We previously confirmed the validity of the rate equations by the oxidation of numerous monophenols and o-diphenols catalysed by tyrosinase from different fruits and vegetables. Other authors have proposed a simplified reaction mechanism for tyrosinase (Mechanism II [Theor. Biol. 203 (2000) 1-12]), although without deducing the rate equations. In this paper, we report new experimental work that provides the lag period value, the steady-state rate, o-diphenol concentration released to the reaction medium. The contrast between these experimental data and the respective numerical simulations of both mechanisms demonstrates the feasibility of Mechanism I. The need for the steps omitted from Mechanism II to interpret the experimental data for tyrosinase, based on the rate equations previously deduced for Mechanism I is explained.  相似文献   

5.
为考察绞股蓝皂苷及其硒配合物对酪氨酸酶的动力学参数和作用机理。本研究采用体外酶促反应,以L-酪氨酸和L-DOPA为底物,模拟了酪氨酸酶单酚和二酚酶的体外催化氧化过程。绞股蓝总皂苷在50%、70%乙醇洗脱段和50%、70%乙醇洗脱绞股蓝皂苷-硒配合物在酪氨酸酶上的Ki值分别为1. 533、1. 767、1. 312和1. 210 mmol/L。Ki值越低,对酪氨酸酶的抑制作用越强,单酚酶的氧化阶段越快,表明硒元素显著提高了绞股蓝皂苷对酪氨酸酶的抑制作用。酶反应动力学分析表明,四种绞股蓝皂苷及其硒配合物对酪氨酸的抑制作用均为混合竞争抑制。其独特的药理化学特性为绞股蓝及硒系美白化妆品的进一步研究开发提供了理论依据和参考。  相似文献   

6.
Melanin synthesized from mushroom tyrosinase and 3,4-dihydroxyphenylalanine has been shown to oxidize NADH and NADPH, reduce ferricyanide, oxidized forms of cytochrome c and dichlorophenolindophenol, and catalyze the coupled oxidation of NADH and reduction of ferricyanide. Kinetic studies involving the determination of initial velocity at various concentrations of substrates and product inhibition measurements have been carried out on the NADH-ferricyanide-melanin reaction. The results are consistent with a ping-pong mechanism in which one product is formed prior to the reaction of melanin with the second substrate involving the reversible oxidation and reduction of melanin during the reaction. It may be concluded that melanin is capable of acting as an electron transfer agent in several reduction-oxidation systems.  相似文献   

7.
The steady state kinetic parameters Km and kcat for the oxidation of phenolic substrates by lignin peroxidase correlated with the presteady state kinetic parameters Kd and k for the reaction of the enzyme intermediate compound II with the substrates, indicating that the latter is the rate-limiting step in the catalytic cycle. ln Km and ln Kd values for phenolic substrates correlated with redox properties, unlike ln kcat and ln k. This finding suggests that in contrast to horseradish peroxidase, electron transfer is not the rate-limiting step during oxidation by lignin peroxidase compound II. A mechanism is proposed for lignin peroxidase compound II reactions consisting of an equilibrium electron transfer step followed by a subsequent rate-limiting step. Analysis of the correlation coefficients for linear relationships between ln Kd and ln Km and different calculated redox parameters supports a mechanism in which the acidic forms of phenols are oxidized by lignin peroxidase and electron transfer is coupled with proton transfer. 1,2-Dimethoxyarenes did not comply with the trend for phenolic substrates, which may be a result of more than one substrate binding site on lignin peroxidase and/or alternative binding modes. This behavior was supported by analogue studies with the 1,2-dimethoxyarenes veratric acid and veratryl aldehyde, both of which are not oxidized by lignin peroxidase. Inclusion of either had little effect on the rate of oxidation of phenolic substrates yet resulted in a decrease in the oxidation rate of 1,2-dimethoxyarene substrates, which was considerable for veratryl alcohol and less pronounced for 3,4-dimethoxyphenethylalcohol and 3,4-dimethoxycinnamic acid, in particular in the presence of veratric acid.  相似文献   

8.
Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme responsible for melanin biosynthesis and for the enzymatic browning of fruits and vegetables. Although the function of tyrosinase in the secondary metabolism of plants remains unclear, it has been proposed that the enzyme plays a role in the betalain biosynthetic pathway. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In the present work, the betaxanthins tyramine-betaxanthin (miraxanthin III) and dopamine-betaxanthin (miraxanthin V) are reported as new natural substrates for tyrosinase. The result of the diphenolase activity of the enzyme on dopamine-betaxanthin was a series of products identified by HPLC and ESI-MS as quinone-derivatives. Data indicate that dopamine-betaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. The kinetic parameters evaluated for the diphenolase activity were Vm=74.4 M min–1, Km=94.7 M. Monophenolase activity on tyramine-betaxanthin yielded the same compounds in the absence of a reducing agent, but when ascorbic acid was present enzymatic conversion to dopamine-betaxanthin could be found. For the first time, kinetic characterization of the monophenolase activity of tyrosinase on betaxanthins is provided (Vm=10.4 M min–1 and Km=126.9 M) and a lag period is described and analyzed according to the mechanism of action of the enzyme. The high affinity shown by tyrosinase for these substrates may be indicative of a previously unconsidered physiological role in betalain metabolism. A possible mechanism for the formation of 2-descarboxy-betacyanins from tyramine-betaxanthin by tyrosinase is also discussed.  相似文献   

9.
The synthesis of melanin involves the oxidation of phenolic substrates by the enzyme tyrosinase. In vertebrates tyrosinase is present only in specialized cells (melanocytes), where it catalyses the oxidation of tyrosine and certain diphenolic intermediate products to quinones which polymerize to give rise to melanin. This specialized metabolic pathway provides a possible approach to the specific chemotherapy of malignant tumours of pigment cells (malignant melanoma). Certain analogues of tyrosine are oxidized by tyrosinase generating reactive orthoquinones with cytotoxic potential. One such analogue, 4-hydroxyanisole, has been investigated as a possible specific melanocytotoxic precursor. The parent compound inhibits DNA synthesis but exhibits little general toxicity, while the tyrosinase oxidation products are highly toxic to cells. The mechanism of this toxicity may involve semiquinone radicals. Encouraging initial results have been obtained from clinical pilot studies using intra-arterial infusion of hydroxyanisole in patients with localized recurrences of malignant melanoma.  相似文献   

10.
Tyrosinase has a suicide inactivation reaction when it acts on omicron-diphenols. In the present paper, this reaction has been studied using a transient phase approach. Explicit equations of product vs. time have been developed for the multisubstrate mechanism of tyrosinase, and the kinetic parameters which characterize the enzyme acting on the suicide substrate catechol have been determined. The effect of pH has also been considered.  相似文献   

11.
The suicide inactivation mechanism of tyrosinase acting on its substrates has been studied. The kinetic analysis of the proposed mechanism during the transition phase provides explicit analytical expressions for the concentrations of o-quinone against time. The electronic, steric and hydrophobic effects of the substrates influence the enzymatic reaction, increasing the catalytic speed by three orders of magnitude and the inactivation by one order of magnitude. To explain the suicide inactivation, we propose a mechanism in which the enzymatic form E(ox) (oxy-tyrosinase) is responsible for such inactivation. A key step might be the transfer of the C-1 hydroxyl group proton to the peroxide, which would act as a general base. Another essential step might be the axial attack of the o-diphenol on the copper atom. The rate constant of this reaction would be directly related to the strength of the nucleophilic attack of the C-1 hydroxyl group, which depends on the chemical shift of the carbon C-1 (delta(1)) obtained by (13)C-NMR. Protonation of the peroxide would bring the copper atoms together and encourage the diaxial nucleophilic attack of the C-2 hydroxyl group, facilitating the co-planarity with the ring of the copper atoms and the concerted oxidation/reduction reaction, and giving rise to an o-quinone. The suicide inactivation would occur if the C-2 hydroxyl group transferred the proton to the protonated peroxide, which would again act as a general base. In this case, the co-planarity between the copper atom, the oxygen of the C-1 and the ring would only permit the oxidation/reduction reaction on one copper atom, giving rise to copper(0), hydrogen peroxide and an o-quinone, which would be released, thus inactivating the enzyme.  相似文献   

12.
The activity of the type 3 copper enzyme tyrosinase toward 2-, 3-, and 4-fluorophenol was studied by kinetic methods and (1)H and (19)F NMR spectroscopy. Whereas 3- and 4-fluorophenol react with tyrosinase to give products that undergo a rapid polymerization process, 2-fluorophenol is not reactive and actually acts as a competitive inhibitor in the enzymatic oxidation of 3,4-dihydroxyphenylalanine (L-dopa). The tyrosinase-mediated polymerization of 3- and 4-fluorophenols has been studied in detail. It proceeds through a phenolic coupling pathway in which the common reactive fluoroquinone, produced stereospecifically by tyrosinase, eliminates an inorganic fluorine ion. The enzymatic reaction studied as a function of substrate concentration shows a prominent lag that is completely depleted in the presence of L-dopa. The kinetic parameters of the reactions can be correlated to the electronic and steric effects of the fluorine substituent position. Whereas the fluorine electron withdrawing effect appears to control the binding of the substrates (K(m) for 3- and 4-fluorophenols and K(I) for 2-fluorophenol), the k(cat) parameters do not follow the expected trend, indicating that in the transition state some additional steric effect rules the reactivity.  相似文献   

13.
Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid, the phosphonic analog of 3,4-dihydroxyphenylglycine, had been previously reported as a potent inhibitor of tyrosinase. The mechanism of the apparent enzyme inhibition by this compound has now been established. Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid turned out to be a substrate and was oxidized to o-quinone, which evolved to a final product identified as 3,4-dihydroxybenzaldehyde, the same as for 3,4-dihydroxyphenylglycine. Monohydroxylated compounds (amino-(3-hydroxyphenyl)methyl phosphonic acid and amino-(4-hydroxyphenyl)methyl phosphonic acid) were not oxidized, neither was 4-hydroxy-l-phenylglycine. However, the relatively high Km for amino-(3,4-dihydroxyphenyl)methyl phosphonic acid (0.52 mm) indicated that competitive inhibition could not entirely explain the previously reported strong inhibitory effect (Ki = 50 and 97 micro m for tyrosine and 3-(3,4-dihydroxyphenyl)alanine (Dopa) as substrates, respectively). Neither was the enzyme covalently inactivated to a significant degree. Spectroscopic and electrochemical analysis of the oxidation of a mixture of Dopa and the inhibitor demonstrated that the phosphonic compound reduced dopaquinone back to Dopa, thus diminishing and delaying the formation of dopachrome. This produces an apparent strong inhibitory effect when the reaction is monitored spectrophotometrically at 475 nm. In this peculiar case Dopa acts as a redox shuttle mediating the oxidation of the shorter phosphonic homolog. Decomposition of the phosphonic o-quinone to 3,4-dihydroxybenzaldehyde drives the reaction against the slightly unfavorable difference in redox potentials.  相似文献   

14.
Production of methyl gallate (MG), which is an important phenolic acid ester for pharmaceutical industry, was carried out by Novozym 435-catalysed transesterification of propyl gallate (PG) with methanol in a deep eutectic solvent. Reaction parameters governing substrate molar ratio, enzyme concentration, temperature and agitation rate were investigated batch-wise in choline chloride:glycerol-water binary mixture. The results were evaluated in terms of conversion of PG, yield of MG and hydrolysis of PG to gallic acid. 10% (w/w) of water was found to be favourable in the reaction medium for low hydrolysis percent. The highest conversion (17.4%) and yield (60.4%) but the lowest hydrolysis (2%) after 120?h of transesterification were found at PG/methanol molar ratio of 1:6, enzyme concentration of 40?g/L, 50?°C and 200?rpm. A kinetic model based on the Ping-Pong Bi–Bi mechanism for transesterification of PG was proposed with the assumption that there were no internal and external mass transfer resistances.  相似文献   

15.
A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.  相似文献   

16.
谭小珊  王帅杰  吴科元  齐鹏  胡佩雯  张静 《菌物学报》2019,38(10):1702-1709
漆酶是一种含铜的单电子多酚氧化酶,能够催化氧化各种酚类及多种染料,在处理染料废水方面具有巨大的潜力。刺芹侧耳Pleurotus eryngii具有较强的产漆酶能力,但漆酶产量在较大程度上受环境条件限制。本文研究了氮源含量、pH、温度、金属离子等环境条件对刺芹侧耳产漆酶能力的影响,优化了其产漆酶条件,并用其粗酶液对典型偶氮类染料甲基橙进行脱色,结果表明,在氮源0.5%(W/W)、pH 5.5、温度28℃、添加5.0mmol/L Mg 2+的培养条件下,刺芹侧耳产漆酶能力最强,培养6d时,漆酶酶活可达78.0U/L。用优化培养的刺芹侧耳粗酶液对偶氮染料甲基橙进行脱色,28h后脱色率可达90%,脱色反应为准一级动力学反应,甲基橙并未完全矿化,而是生成小分子中间产物。  相似文献   

17.
A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.  相似文献   

18.
One of the important characteristics of tyrosinase is the autocatalytic nature of the oxidation of natural monohydric phenol substrates, such as tyrosine. In vitro tyrosinase exhibits a lag phase in which the maximum velocity of oxidation is attained after a period of induction. This acceleration contrasts with the kinetics of dihydric phenol oxidation which exhibit conventional Michaelis-Menten kinetics. It has been known for half a century that DOPA is a co-factor in the oxidation of tyrosine and addition of a small amount of catechol reduces the length of the lag period. The significance of DOPA is in this action, and DOPA is known to be formed in phase I melanogenesis. Until recently there has been controversy regarding the source of the DOPA in the in vitro reaction system. Most investigators have favoured a mechanism based on the generation of DOPA by a direct hydroxylation of tyrosine. However, recent evidence has suggested that DOPA is indirectly derived by reduction of dopaquinone. In this communication the evidence for the indirect mechanism derived from the use of analogue substrates is reviewed.  相似文献   

19.
Laccases catalyse the oxidation of a wide range of substrates by a radical-catalyzed reaction mechanism, with a corresponding reduction of oxygen to water in a four-electron transfer process. Due to that, laccases are considered environmentally friendly enzymes, and lately there has been great interest in their use for the transformation and degradation of phenolic compounds. In this work, enzymatic oxidation of catechol and L-DOPA using commercial laccase from Trametes versicolor was performed, in continuously operated microreactors. The main focus of this investigation was to develop a new process for phenolic compounds oxidation, by application of microreactors. For a residence time of 72 s and an inlet oxygen concentration of 0.271 mmol/dm3, catechol conversion of 41.3% was achieved, while approximately the same conversion of L-DOPA (45.0%) was achieved for an inlet oxygen concentration of 0.544 mmol/dm3. The efficiency of microreactor usage for phenolic compounds oxidation was confirmed by calculating the oxidation rates; in the case of catechol oxidation, oxidation rates were in the range from 76.101 to 703.935 g/dm3/d (18–167 fold higher, compared to the case in a macroreactor). To better describe the proposed process, kinetic parameters of catechol oxidation were estimated, using data collected from experiments performed in a microreactor. The maximum reaction rate estimated in microreactor experiments was two times higher than one estimated using the initial reaction rate method from experiments performed in a cuvette. A mathematical model of the process was developed, and validated, using data from independent experiments.  相似文献   

20.
The complex reaction mechanism of tyrosinase involves three enzymatic forms, two overlapping catalytic cycles and a dead-end complex. The deoxytyrosinase form binds oxygen with a high degree of affinity, μM. The mettyrosinase and oxytyrosinase forms bind monophenols and o-diphenols, although the former is inactive on monophenols. Analytical expressions for the catalytic and Michaelis constants of tyrosinase towards phenols and o-diphenols have been derived. Thus, the Michaelis constant of tyrosinase towards monophenols and o-diphenols are related with the catalytic constants for monophenols and o-diphenols , respectively, and with the binding rate constants of the oxytyrosinase form with these substrates (k+4 and k+6, respectively), by means of the expressions and . From these expressions, we calculate the values of the binding rate constant of oxytyrosinase to the substrates (monophenols and o-diphenols) for tyrosinases from different biological sources, and reveal that the o-diphenols bind more rapidly to oxytyrosinase than the monophenols. In addition, a new kinetic constant (the Michaelis constant for o-diphenol in the monophenolase activity), is derived and determined. Thus, it has been shown that tyrosinase has apparently higher affinity towards o-diphenols in its monophenolase than in its diphenolase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号