首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because a limited study previously showed that alpha-synuclein (alpha-syn), the major pathogenic protein for Parkinson disease, was expressed in differentiating brain tumors as well as various peripheral cancers, the main objective of the present study was to determine whether alpha-syn might be involved in the regulation of tumor differentiation. For this purpose, alpha-syn and its non-amyloidogenic homologue beta-syn were stably transfected to human osteosarcoma MG63 cell line. Compared with beta-syn-overexpressing and vector-transfected cells, alpha-syn-overexpressing cells exhibited distinct features of differentiated osteoblastic phenotype, as shown by up-regulation of alkaline phosphatase and osteocalcin as well as inductive matrix mineralization. Further studies revealed that proteasome activity was significantly decreased in alpha-syn-overexpressing cells compared with other cell types, consistent with the fact that proteasome inhibitors stimulate differentiation of various osteoblastic cells. In alpha-syn-overexpressing cells, protein kinase C (PKC) activity was significantly decreased, and reactivation of PKC by phorbol ester significantly restored the proteasome activity and abrogated cellular differentiation. Moreover, activity of lysosome was up-regulated in alpha-syn-overexpressing cells, and treatment of these cells with autophagy-lysosomal inhibitors resulted in a decrease of proteasome activity associated with up-regulation of alpha-syn expression, leading to enhance cellular differentiation. Taken together, these results suggest that the stimulatory effect of alpha-syn on tumor differentiation may be attributed to down-regulation of proteasome, which is further modulated by alterations of various factors, such as protein kinase C signaling pathway and a autophagy-lysosomal degradation system. Thus, the mechanism of alpha-syn regulation of tumor differentiation and neuropathological effects of alpha-syn may considerably overlap with each other.  相似文献   

2.
Bone cells produce many glycoproteins potentially involved in the maintenance of healthy bone tissues. Two cytokines produced in inflamed joints, tumor necrosis factor (TNF)alpha and transforming growth factor (TGF)beta, have previously been shown to alter cellular glycosylation which may potentially affect the expression and function of glycoproteins. In order to evaluate models to study the glycodynamics of bone cells, we examined primary human osteoblastic cells from osteoarthritis patients, and compared these to human osteosarcoma cells MG63 and SJSA-1. We showed here for the first time that all of the human osteoblastic cells actively synthesize complex N- and O-glycan chains of bone cell glycoproteins, with quantitative differences between cell types. TNFalpha-induced apoptosis or TGFbeta-induced cell differentiation and proliferation had significant effects on both cell surface carbohydrates and glycosyltransferase activities of osteoblasts and osteosarcoma cells. The results indicate that cultured human bone-derived osteoblastic cells are good models to examine the glycodynamics of osteoblasts under conditions of cell growth and cell death. The changes induced by cytokines can result in altered cell surface functions which may be of importance in osteoarthritis, osteoporosis and other bone diseases.  相似文献   

3.
Osteosarcoma is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone. Although treatment modalities have been improved over the past decades, it is still a tumor with a high mortality rate in children and young adults. Based on histological considerations, osteosarcoma arises from impaired differentiation of these immature cells into more mature types and that correction of this impairment may reduce malignancy and increase the efficiency of chemotherapy. The purpose of this study was to determine the effect of specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK) and p38 on the differentiation of human osteosarcoma cell line SaOS-2 cells. We found that PD98059, a specific inhibitor of MEK, inhibited the serum-stimulated proliferation of SaOS-2 cells; whereas SB203580, a specific inhibitor of p38 MAPK, had little effect on it. SB203580 suppressed ALPase activity, gene expression of type I collagen, and expression of ALP and BMP-2 mRNAs; whereas PD98059 upregulated them dose dependently. In addition, immunoblot and immunostaining analysis revealed that phosphorylation of ERK was increased by treatment with SB203580; whereas PD98059 increased the phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteosarcoma cell differentiation is regulated by the balance between the activities of the ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteosarcoma cell differentiation, whereas the p38 pathway does so positively. MEK inhibitor may thus be a good candidate for altering the expression of the osteosarcoma malignant phenotype.  相似文献   

4.
5.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

6.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
The distribution of type I, II, III, IV, V and VI collagens in 20 cases of osteosarcoma was demonstrated immunohistochemically using monospecific antibodies to different collagen types. In addition, biochemical analysis was made on collagenous proteins synthesized by tumor cells in short-term cultures obtained from seven representative cases and compared with dermal fibroblasts. In osteoblastic areas, most of the tumor osteoid consisted exclusively of type I collagen. Type V collagen was associated in some of them. Type III and type VI collagens were mainly localized in the perivascular fibrous stroma. Cultured tumor cells from osteoblastic osteosarcomas produced type I collagen exclusively and small amount of type V collagen constantly, while the synthetic activity of type III collagen was extremely low. In contrast, fibroblastic areas were characterized by the codistribution of type I, III, VI collagens and chondroblastic areas by type I, V, VI collagens as well as type II. Furthermore, type IV collagen was demonstrated in the stroma, other than the basement membrane region of blood vessels, in fibroblastic, intramedullary well-differentiated and telangiectatic osteosarcomas. In vitro, the production of variable amounts of type IV collagen, which was not detected in cultured dermal fibroblasts, was also recognized in the osteoblastic, fibroblastic, undifferentiated and intramedullary well-differentiated osteosarcomas examined. These findings suggest that the immunohistochemical approach using monospecific antibodies to different collagen types is useful not only in identifying some specific organoid components, such as tumor osteoid, but also in disclosing the biological properties of osteosarcoma cells with diverse differentiation.  相似文献   

9.
A newly established human osteosarcoma cell line, HS-Os-1, from an osteoblastic tumor arising in the left humerus of an 11-year-old girl was morphologically characterized in vitro and in vivo. HS-Os-1 cells in a monolayer have been maintained for more than 2 years since the initial cultivation, and were round or polygonal in shape with marked pleomorphism. Their cytoplasm was strongly positive for specific markers of osteoblasts, such as alkaline phosphatase and osteocalcin. Tumors induced in nude mice by HS-Os-1 cell inoculation at passage 12 or 23 revealed typical histological features of osteoblastic osteosarcoma, similar to those observed in the original tumor, producing prominent osteoid matrix with calcification. Ultrastructurally, HS-Os-1 cells in vitro and tumor cells in vivo showed similar well-developed, markedly dilated rough endoplasmic reticulum, polysomes and microfilaments in their cytoplasm. Additionally, many collagen fibers associated with deposition of electron-dense material were detected in the stroma featuring osteoid matrix. Thus, the HS-Os-1 cell line was shown to exhibit its osteoblastic nature in vitro and in vivo, and therefore might become an extremely useful tool for various pathomorphological investigations on human osteosarcomas.  相似文献   

10.
Murine calvariae pre-osteoblasts (MC3T3-E1), grown in a novel bioreactor, proliferate into a mineralizing 3D osteoblastic tissue that undergoes progressive phenotypic maturation into osteocyte-like cells. Initially, the cells are closely packed (high cell/matrix ratio), but transform into a more mature phenotype (low cell/matrix ratio) after about 5 mo, a process that recapitulates stages of bone development observed in vivo. The cell morphology concomitantly evolves from spindle-shaped pre-osteoblasts through cobblestone-shaped osteoblasts to stellate-shaped osteocyte-like cells interconnected by many intercellular processes. Gene-expression profiles parallel cell morphological changes, up-to-and-including increased expression of osteocyte-associated genes such as E11, DMP1, and sclerostin. X-ray scattering and infrared spectroscopy of contiguous, square centimeter-scale macroscopic mineral deposits are consistent with bone hydroxyapatite, showing that bioreactor conditions can lead to ossification reminiscent of bone formation. Thus, extended-term osteoblast culture (≤10 mo) in a bioreactor based on the concept of simultaneous growth and dialysis captures the full continuum of bone development otherwise inaccessible with conventional cell culture, resulting in an in vitro model of osteogenesis and a source of terminally differentiated osteocytes that does not require demineralization of fully formed bone.  相似文献   

11.
Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.  相似文献   

12.
TWIST and adenomatosis polyposis coli (APC) are critical signaling factors in normal bone development. In previous studies examining a homogeneously treated cohort of pediatric osteosarcoma patients, we reported the frequent and concurrent loss of both TWIST and APC genes. On these bases, we created a related animal model to further explore the oncogenic cooperation between these two genes. We performed intercrosses between twist-null/+ and Apc1638N/+ mice and studied their progeny. The Apc1638N/+;twistnull/+ mice developed bone abnormalities observed by macroscopic skeletal analyses and in vivo imaging. Complementary histologic, cellular, and molecular analyses were used to characterize the identified bone tumors, including cell culture and immunofluorescence of bone differentiation markers. Spontaneous localized malignant bone tumors were frequently identified in Apc1638N/+;twist-null/+ mice by in vivo imaging evaluation and histologic analyses. These tumors possessed several features similar to those observed in human localized osteosarcomas. In particular, the murine tumors presented with fibroblastic, chondroblastic, and osteoblastic osteosarcoma histologies, as well as mixtures of these subtypes. In addition, cellular analyses and bone differentiation markers detected by immunofluorescence on tumor sections reproduced most murine and human osteosarcoma characteristics. For example, the early bone differentiation marker Runx2, interacting physically with hypophosphorylated pRb, was undetectable in these murine osteosarcomas, whereas phosphorylated retinoblastoma was abundant in the osteoblastic and chondroblastic tumor subtypes. These characteristics, similar to those observed in human osteosarcomas, indicated that our animal model may be a powerful tool to further understand the development of localized osteosarcoma.  相似文献   

13.
Treatment for osteosarcoma is problematic because there are no prognostic markers. Diagnosis is primarily limited to cytologic grading. Oncogenesis alters cell structure therefore osteoblast tissue matrix proteins (extracellular matrix, cytoskeletal, intermediate filament, and nuclear matrix proteins), components of the cell substructure, are candidates for osteosarcoma markers. Structural proteins of the extracellular matrix, e.g. the collagens, are useful for diagnosis but not for tumors that produce little osteoid. To identify principal cellular tissue matrix proteins that distinguish normal from transformed human osteoblasts, their expression in normal osteoblasts, two osteosarcoma cell lines, and three primary osteosarcoma tumors were compared. The tumors were graded as (i) intermediate, (ii) high, and (iii) high grade recurrent. The 1-D SDS/PAGE profiles of the major components of the nuclear matrix and intermediate filament fractions from normal osteoblasts did not vary with biopsy site, age, or sex of patients. These profiles included known cytoskeletal proteins and OB250, a ∼250 kD protein(s) observed in the intermediate filament fraction. A loss of protein bands, including OB250, was observed in the osteosarcoma cell lines and tumors. The intermediate and high grade tumors exhibited nearly identical protein profiles including potential tumor-specific proteins and collagen, consistent with the presence of intracellular collagen fibers in osteosarcoma. A microsequence was obtained for OT25, a novel low molecular weight protein observed in osteosarcoma cell lines. Fibrinogen γ-chain, a protein that mediates cell adhesion was recovered from the high grade recurrent tumor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Annexin 2 expression is reduced in human osteosarcoma metastases   总被引:6,自引:0,他引:6  
Osteosarcoma is an aggressive primary bone cancer affecting primarily children and young adults. The development of valuable diagnostic indicators and therapeutic agents will be enhanced by the identification and characterization of genes that contribute to its aggressive behavior. We used representational difference analysis to isolate genes differentially expressed between primary human osteosarcoma tumors and subsequent metastatic lung lesions to identify genes potentially involved in metastatic potential. Several genes were differentially expressed between the two tumor populations, including annexin2. The levels of annexin2 mRNA and protein inversely correlated with metastatic potential in a subset of human osteosarcoma tumor specimens, as well as in a human osteosarcoma cell line selected for increased metastatic potential. Annexin2 has been described in several cellular localizations with various functional implications, many of which may be relevant to metastatic potential. Therefore, the subcellular localization of endogenous annexin2 protein was evaluated biochemically by subcellular fractionation and immunologically by flow cytometry and immunofluorescence in osteoblastic cells. Annexin2 was localized to the cytoplasm and intracellular aspect of the plasma membrane, excluded from the nucleus and undetectable on the cell surface or in the conditioned medium. Overexpression of annexin2 in osteosarcoma cells did not alter several in vitro phenotypes often used to assess metastatic potential including motility, adhesion, and proliferation. However, our previous data have implicated annexin2 in the mineralization process of osteoblastic cells in vitro. Consistent with an increase in differentiation-induced mineralization, there was diminished tumorigenicity and experimental metastatic potential of osteosarcoma cells overexpressing annexin2. These data suggest that annexin2 may downregulate osteosarcoma aggressiveness by inducing a more differentiated state in osteoblastic cells.  相似文献   

15.
Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.  相似文献   

16.
Osteosarcoma is the most common bone malignancy, and it seriously affects the quality of life of affected children and adolescents. Glabridin (GLA), a major component of licorice root extract, has been reported to exert antitumor effects against a variety of tumor types; however, its effects on osteosarcoma have not been elucidated. In the current study, we investigate the effects and potential antimetastatic mechanisms of GLA on osteosarcoma in vitro and in vivo. Flow cytometry showed that GLA induced G2/M cell cycle phase arrest and promoted cell apoptosis. Transwell and wound-healing assays showed that GLA significantly decreased the migration and invasion of osteosarcoma cells. Further western blotting and quantitative real-time polymerase chain reaction showed that the expression of matrix metalloproteinase (MMP)-2 and MMP-9 in MG63 and HOS cells were reduced after GLA treatment. Moreover, western blotting demonstrated that GLA downregulated the phosphorylation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase. A coimmunoprecipitation assay illustrated that formation of cAMP response element-binding protein (CREB)–activating protein 1 (AP1) complexes and the DNA binding activities of CREB and AP1 in MG63 and HOS cells were impaired following treatment with GLA. Finally, GLA inhibited tumor growth and suppressed osteosarcoma cell metastasis in vivo. Overall, our findings highlight the potential of GLA as a therapeutic agent for the prevention and treatment of tumor metastasis.  相似文献   

17.
Osteosarcoma is the most frequent, nonhematopoietic, primary malignant tumor of bone. Histopathologically, osteosarcoma is characterized by complex mixtures of different cell types with bone formation. The role of environmental factors in the formation of such a complicated tissue structure as osteosarcoma remains to be elucidated. Here, a newly established murine osteosarcoma model was used to clarify the roles of environmental factors such as fibroblast growth factor-2 (Fgf2) or leukemia-inhibitory factor (Lif) in the maintenance of osteosarcoma cells in an immature state. These factors were highly expressed in tumor environmental stromal cells, rather than in osteosarcoma cells, and they potently suppressed osteogenic differentiation of osteosarcoma cells in vitro and in vivo. Further investigation revealed that the hyperactivation of extracellular signal-regulated kinase (Erk)1/2 induced by these factors affected in the process of osteosarcoma differentiation. In addition, Fgf2 enhanced both proliferation and migratory activity of osteosarcoma cells and modulated the sensitivity of cells to an anticancer drug. The results of the present study suggest that the histology of osteosarcoma tumors which consist of immature tumor cells and pathologic bone formations could be generated dependent on the distribution of such environmental factors. The combined blockade of the signaling pathways of several growth factors, including Fgf2, might be useful in controlling the aggressiveness of osteosarcoma.  相似文献   

18.
Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients.  相似文献   

19.
20.
We investigated the effects of human granulocyte macrophage-colony stimulating factor (GM-CSF) on the relation between differentiation and apoptosis in SaOS-2 cells, an osteoblast-like cell line. To determine the relationship between these cellular processes, SaOS-2 cells were treated in vitro for 1, 7 and 14 days with 200 ng/mL GM-CSF and compared with untreated cells. Five nM insulin-like growth factor (IGF-I) and 30 nM okadaic acid were used as negative and positive controls of apoptosis, respectively. Effects on cell differentiation were determined by ECM (extracellular matrix) mineralization, morphology of some typical mature osteoblast differentiation markers, such as osteopontin and sialoprotein II (BSP-II), and production of bone ECM components such as collagen I. The results showed that treatment with GM-CSF caused cell differentiation accompanied by increased production of osteopontin and BSP-II, together with increased ECM deposition and mineralization. Flow cytometric analysis of annexin V and propidium iodide incorporation showed that GM-CSF up-regulated apoptotic cell death of SaOS-2 cells after 14 days of culture in contrast to okadaic acid, which stimulated SaOS-2 apoptosis only during the early period of culture. Endonucleolytic cleavage of genomic DNA, detected by "Aúladdering analysis"Aù, confirmed these data. The results suggest that GM-CSF induces osteoblastic differentiation and long-term apoptotic cell death of the SaOS-2 human osteosarcoma cell line, which in turn suggests a possible in vivo physiological role for GM-CSF on human osteoblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号