首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine deaminase (ADA, EC 3.5.4.4) is a ubiquitous (beta/alpha)8-barrel enzyme crucial for purine metabolism and normal immune competence. In this study, it was observed that loss of enzyme activity of murine ADA (mADA) precedes the global secondary and tertiary structure transition when the protein is exposed to denaturant. The structural mechanism for this phenomenon was probed using site-specific 19F NMR spectroscopy in combination with [6-19F]tryptophan labeling and inhibitor binding. There are four tryptophan residues in mADA and all are located more than 12 A from the catalytic site. The 19F NMR spectra of [6-19F]Trp-labelled mADA show that the urea-induced chemical shift change of 19F resonance of W161, one of the four tryptophan 19F nuclei, correlates with the loss of enzyme activity. The urea-induced chemical shift change of another 19F resonance of W117 correlates with the change of the apparent rate constant for the binding of transition-state analogue inhibitor deoxycoformycin to the enzyme. On the other hand, the chemical environment of the local region around W264 does not change significantly, as a consequence of perturbation by low concentrations of urea or substrate analog. The results indicate that different regions of mADA have different local stability, which controls the activity and stability of the enzyme. The results provide new insights into the relationship between the function of a protein and its conformational flexibility as well as its global stability. This study illustrates the advantage of 19F NMR spectroscopy in probing site-related conformational change information in ligand binding, enzymatic activity and protein folding.  相似文献   

2.
31P nuclear magnetic resonance (NMR) was used to directly observe the binding of inorganic phosphate to alkaline phosphatase. Evidencq for the tight binding of 1.5-2.0 mol of inorganic phosphate per dimer of alkaline phosphatase is presented. Two distinct forms of bound phosphate are observed, one predominating above pH 7 and representing the non-covalent E-P1 complex and the other predominating below pH 5 and representing the covalent E-P1 complex. The 31P NMR line width of the E-P1 complex indicates that the dissociation of noncovalent phosphate is the rate-limiting step in the turnover of the enzyme at high pH.  相似文献   

3.
Aspartate transcarbamoylase labeled with 3-fluorotyrosine was purified from an Escherichia coli strain which was auxotrophic for tyrosine and overproduced aspartate transcarbamoylase upon uracil starvation. The labeled enzyme in which about 85% of the tyrosines were replaced by fluorotyrosine exhibited high enzyme activity that varied in a sigmoidal manner with respect to the aspartate concentration. Also, the labeled enzyme was inhibited by CTP, activated by ATP, and exhibited a 2.6% decrease in sedimentation coefficient upon the addition of the active-site ligand, N-(phosphonacetyl)-L-aspartate. Thus, despite extensive replacement of tyrosines by fluorotyrosine, the modified enzyme was similar to native aspartate transcarbamoylase. The 19F nuclear magnetic resonance spectrum of isolated regulatory subunits labeled with fluorotyrosine consisted of a single peak. Addition of the activator, ATP, or the inhibitor, CTP, caused a loss of intensity at about 61.3 ppm upfield from a trifluoroacetic acid reference and an increase at about 61.5 ppm, but CTP also caused an increase at about 61.0 ppm. Five overlapping resonances were observed in the 19F NMR spectrum of unliganded catalytic subunits containing fluorotyrosine. Although the binding of the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, or the combination of carbamoylphosphate and succinate caused similar disappearances of resonances, the addition of N-(phosphonacetyl)-L-aspartate caused the appearance of resonances not observed with carbamoylphosphate plus succinate. Carbamoylphosphate alone perturbed three or four resonances and the subsequent addition of succinate affected at least two.  相似文献   

4.
Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.  相似文献   

5.
19F nuclear magnetic resonance (NMR) spectroscopy was used to study "communication" between the catalytic and regulatory subunits in aspartate transcarbamoylase of Escherichia coli. Hybrid enzymes composed of fluorotyrosine-labeled regulatory subunits and native catalytic subunits or of native regulatory subunits and fluorotyrosine-labeled catalytic subunits were constructed and shown to have the allosteric kinetic properties of native enzyme. These hybrids exhibited the ligand-promoted "global" conformational changes characteristic of native aspartate transcarbamoylase and alterations in the NMR spectrum when ligands bind to the active site. The NMR difference spectrum caused by the binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to the hybrid containing 19F-labeled regulatory chains consisted of two troughs and a peak, suggesting that two tyrosines in the regulatory polypeptide chains were affected by the binding of ligand to the catalytic subunits. The increase in magnitude of the peak appeared to depend directly on the fractional saturation of the active sites. A peak with two distinct shoulders was observed in the 19F NMR spectrum of the hybrid containing fluorotyrosine in the catalytic chains when it was saturated with the ligand, whereas the spectrum for the unliganded enzyme consisted of a single peak. The NMR difference spectrum showed that the bisubstrate ligand perturbed at least two resonances, and these changes appeared to be tightly linked to the binding of the ligand.  相似文献   

6.
The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium.  相似文献   

7.
D-Lactate dehydrogenase (D-LDH) is a membrane-associated respiratory enzyme of Escherichia coli. The protein is composed of 571 amino acid residues with a flavin adenine dinucleotide (FAD) cofactor, has a molecular weight of approximately 65,000, and requires lipids or detergents for full activity. We used NMR spectroscopy to investigate the structure of D-LDH and its interaction with phospholipids. We incorporated 5-fluorotryptophan (5F-Trp) into the native enzyme, which contains five tryptophan residues, and into mutant enzymes, where a sixth tryptophan is substituted into a specific site by oligonucleotide-directed mutagenesis, and studied the 5F-Trp-labeled enzymes using 19F-NMR spectroscopy. In this way, information was obtained about the local environment at each native and substituted tryptophan site. Using a nitroxide spin-labeled fatty acid, which broadens the resonance from any residue within 15 A, we have established that the membrane-binding area of the protein includes the region between Tyr 228 and Phe 369, but is not continuous within this region. This conclusion is strengthened by the results of 19F-NMR spectroscopy of wild-type enzyme labeled with fluorotyrosine or fluorophenylalanine in the presence and absence of a nitroxide spin-labeled fatty acid. These experiments indicate that 9-10 Phe and 3-4 Tyr residues are located near the lipid phase.  相似文献   

8.
Y C Chang  R D Scott  D J Graves 《Biochemistry》1986,25(8):1932-1939
19F NMR spectroscopic properties of glycogen phosphorylase reconstituted with 6-fluoropyridoxal (6-FPAL) and 6-fluoropyridoxal phosphate (6-FPLP) were investigated. Analysis of the contribution of chemical shift anisotropy to the line width of the 6-FPLP-enzyme signal shows that the coenzyme molecule is tightly bound to the protein. The chemical shift of the fluorine nucleus in the free 6-FPLP protein is pH independent from pH 6 to pH 9.1. When the 6-FPLP-enzyme forms complexes with AMP, AMP plus glucose-1-P, and AMP plus inorganic phosphate, signals at -11.0, -13.1, and -10.4 ppm are observed, respectively. These different chemical shifts indicate that the protein in each complex has a distinct conformation. The exchange rate between the 6-FPLP-protein-AMP complex and the same complex with bound glucose-1-P is estimated to be 3300 +/- 700 s-1, and that between the 6-FPLP-protein-AMP complex and with bound inorganic phosphate is 500 +/- 100 s-1. The former exchange rate is 13 times faster than that of the same process for the 6-FPAL-enzyme. Analysis of the effects of temperature on the 19F line shape of the 6-FPLP enzyme in the presence of ligands shows that the exchange rates between different complexes drop significantly between 20 and 10 degrees C. Within this temperature range, Arrhenius plots of the enzymatic activities of the native and 6-FPLP-enzymes at varied temperatures also show a pronounced curvature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The electronic and 1H NMR spectra are reported for the cobalt(II) alkaline phosphatase (EC 3.1.3.1.) system at pH around 6 in the range 0-2 mol of cobalt per mol protein. It is shown that under the present experimental conditions cobalt(II) selectively populates the A sites. Three isotropically shifted NH signals have been detected in the A site that indicate the presence of three histidines in the coordination sphere of cobalt(II). The electronic spectra and the nuclear relaxation properties are consistent with pentacoordination of cobalt(II) in the A site. The finding of reproducible preparation routes for the derivatives, and of appropriate experimental conditions for the observation of their 1H NMR spectra, open new possibilities for the spectroscopic investigation of alkaline phosphatase.  相似文献   

10.
The reversible, noncovalent binding of inorganic phosphate to Escherichia coli alkaline phosphatase at pH 8 has been examined by equilibrium dialysis at two temperatures and two ionic strengths. Binding occurs with a stoichiometry of two phosphate ions per dimeric enzyme molecule and a single dissociation constant that is not very sensitive to temperature or ionic strength. These results contradict published evidence for anti-cooperative binding of inorganic phosphate to alkaline phosphatase. Reasons are presented for believing that the apparent anti-cooperativity reported by other workers is artifactual.  相似文献   

11.
The selective reaction of Cys-45 and -82, on the one hand, and Cys-390, on the other, with 3-bromo-1,1,1-trifluoropropanone allows for the probing of these regions of aspartate transaminase in the absence and in the presence of enzymatic ligands by 19F nuclear magnetic resonance (NMR). The 19F chemical shifts of the resonance lines differ for the three cysteines and so does their behavior with pH changes. The resonance signals with chemical shifts at 615 and 800 Hz upfield from trifluoroacetic acid correspond to modified cysteine-82 and -45 and have tentatively been assigned in this order. The 615-Hz resonance is affected by pH changes that fit best the influence of a single ionizing residue. On the 800-Hz line, the pH changes appear to be the influence of a minimum of two ionizing residues. The 19F resonance from modified Cys-390 is pH independent in the pH range 5-9 for the pyridoxal phosphate, pyridoxamine phosphate, and apoenzyme forms of the enzyme. Occupation of the active site by a quasi-enzyme-substrate complex, trifluoromethionine pyridoxyl phosphate, affects the 19F chemical shift of modified Cys-390, making it pH dependent with a pK value of 8.4. The 19F NMR properties of the pyridoxal form of Cys-390-modified enzyme can be used to monitor some ligand interactions with the active-center region. Addition of alpha-ketoglutarate or succinate to the ketone labeled enzyme causes a decrease in the resonance line width, and titrations show that this procedure is a good method with which to study the affinity of the enzyme for these ligands. The interpretation of the chemical shift and line-width characteristics of the 19F resonance arising from Cys-390 are most consistent with a model in which the region around this residue seems to be affected by conformational changes arising from substrate binding to the active-center subsites in productive (covalent) manner. Nonproductive complexes which possess fast ligand-protein exchange, such as those between alpha-ketoglutarate or succinate with the pyridoxal phosphate form of the enzyme, may result only in a greater degree of freedom for Cys-390.  相似文献   

12.
Phosphate-water oxygen exchange catalyzed by Escherichia coli alkaline phosphatase was monitored using the 18O shift on the 31P NMR signal of inorganic phosphate. Different kinetic patterns were observed with native zinc enzyme and with its cobalt analogue. For native enzyme at pH values ranging from 4.4 to 10.0, the distribution of 18O species in Pi, viz. P18O4, P18O316O,P18O216O2,P18O16O3,P16O4, with time is compatible with a kinetic scheme in which E-P, the noncovalent enzyme-phosphate complex, dissociates more rapidly than it forms the covalent complex E-P. For the cobalt enzyme at pH 6.8, the distribution of 18O species in Pi with time is different and leads to the conclusion that formation of E-P is more rapid than dissociation of Pi from E-P-A computer simulation gave good quantitative agreement with the observed distribution for the time course of the cobalt enzyme reaction when the ratio of the rate of formation of E-P to dissection of E-P was assumed to be 3 +/- 0.5.  相似文献   

13.
The uptake of cobalt(II) ions by apoalkaline phosphatase at pH 8 (the pH optimum for activity) has been investigated by the combined use of electronic and 1H NMR spectroscopies. The presence of fast-relaxing high spin cobalt(II) ions in the active site cavity of the protein induces sizable isotropic shifts of the 1H NMR signals of metal-coordinated protein residues, allowing us to propose a metal uptake pattern by the various metal binding sites both in the presence and in the absence of magnesium ions. In the absence of magnesium the active site is not organized in specific metal binding sites. The first equivalent of cobalt(II) ions per dimer binds in an essentially unspecific and possibly fluxional fashion, giving rise to a six-coordinated chromophore. The second and third equivalents induce the formation of increasing amounts of metal ions pairs, cooperatively arranged into the A and B sites of the same subunit with a five- and six-coordinated geometry, respectively. The fourth and fifth equivalents induce the formation of fully blocked A-B pairs in both subunits. Magnesium shows the property of organizing the metal binding sites, probably through coordination to the C sites. Electronic and 1H NMR titration with Co2+ ions show that the initial amount of fluxional cobalt is smaller than in the absence of magnesium and that A-B pairs are more readily formed. Titration of fully metalated Co4Mg2alkaline phosphatase samples with phosphate confirms binding of only one phosphate per dimer.  相似文献   

14.
The Dictyostelium discoideum alkaline phosphatase was investigated kinetically in an attempt to elucidate its mechanism of action. Analysis of the hydrolysis of p-nitrophenyl phosphate by stopped-flow spectrophotometry revealed biphasic kinetics, suggesting a double displacement enzyme mechanism. Furthermore, Tris stimulated activity in an uncompetitive manner, a result that was consistent with this interpretation. The enzyme was inhibited reversibly by phosphate at low ionic strength, but the inhibition was irreversible at high ionic strength and the latter effect was enhanced at alkaline pH values. These results indicate that high ionic strength and alkaline pH conditions bring about a conformational change that renders the enzyme susceptible to irreversible inhibition by phosphate.  相似文献   

15.
The pre-steady-state kinetics for the hydrolysis of fructose 1,6-bisphosphate by rabbit liver fructose bis-phosphatase have been investigated by stopped-flow kinetics utilizing an acid-base indicator method that permits the continuous monitoring of the inorganic phosphate product. The reaction sequence is characterized by two successive first-order steps followed by establishment of the steady-state rate. The first exponential process results from a conformational change in the protein that is dye sensitive owing to a perturbation of an acidic residue on the protein. A second process reflects the rapid initial turnover of all four subunits of the enzyme with the concomitant release of inorganic phosphate followed by the rate-limiting step of the catalytic cycle. This latter step may involve a product release (fructose 6-phosphate) or a second conformational change. The catalytic cycle ends with decay of the enzyme to its initial unreactive resting state.  相似文献   

16.
Burst titration experiments conducted on a highly purified isoenzyme of wheat germ acid phosphatase under conditions where [S]o > Km indicate that there is one titratable active site per molecule of enzyme of molecular weight 59,000. The enzyme is labeled to only a small extent with inorganic [32P]phosphate ion. Incubation of wheat germ acid phosphatase with 32P-labeled substrates such as p-nitrophenyl phosphate or inorganic pyrophosphate followed by quenching in alkali results in the stoichiometric trapping of a base-stable, acid-labile phosphorylated protein. The extent of 32P incorporation parallels the degree of purity of the enzyme and corresponds to the incorporation of 1 mol of phosphate per mole of enzyme. The incorporation is eliminated by the simultaneous presence of excess unlabeled phosphate ion (a competitive inhibitor) and is not observed when a noncatalytic protein (such as bovine serum albumin) is substituted for the enzyme. Complete alkaline hydrolysis of the labeled protein results in the recovery of an 85% yield of τ-phosphohistidine, identified by ion-exchange chromatography, high-voltage paper electrophoresis, and comparison with a synthetic sample. A 32P-labeled tryptic tetradecapeptide was isolated following hydrolysis of the labeled, reduced, and carboxymethylated protein with trypsin at pH 8.3, separation of the labeled peptide, and purification by two methods including a novel variant of a diagonal electrophoresis technique. The end groups and composition of the peptide are reported. The data are consistent with the interpretation that a phosphohistidine-enzyme intermediate is formed as an obligatory intermediate in the catalytic reaction involving this enzyme.  相似文献   

17.
Preincubation of F1-ATPase with ADP and Mg2+ leads to ADP binding at regulatory site inducing a hysteretic inhibition of ATP hydrolysis, i.e., an inhibition that slowly develops after Mg-ATP addition (Di Pietro, A., Penin, F., Godinot, C. and Gautheron, D.C. (1980) Biochemistry 19, 5671-5678). It is shown here that inorganic phosphate (Pi) together with ADP during preincubation abolishes the time-dependence of the inhibition after the addition of the substrate Mg-ATP. This preincubation in the presence of both Pi and ADP slowly leads to a conformation of the enzyme immediately inhibited after the addition of the substrate Mg-ATP. The Pi effect is half-maximal at 35 microM and pH 6.6, whereas a limited effect is induced at pH 8.0. The preincubation of F1-ATPase with Pi and ADP must last long enough (t1/2 = 5 min). The effects can be correlated to the amount of Pi bound to the enzyme, 1 mol Pi per mol (apparent KD of 33 microM) at saturation. Pi neither modifies the ADP binding nor the final level of the concomitant inhibition. When Pi is not present in the preincubation, the final stable rate of ADP-induced hysteretic inhibition is always reached when a near-constant amount of Pi has been generated during Mg-ATP hydrolysis. Kinetic experiments indicate that preincubation with ADP and Pi decreases both Vmax and Km which would favor a conformational change of the enzyme. Taking into account the Pi effects, a more precise model of hysteretic inhibition is proposed. The natural protein inhibitor IF1 efficiently prevents the binding of Pi produced by ATP hydrolysis indicating that the hysteretic inhibition and the IF1-dependent inhibition obey different mechanisms.  相似文献   

18.
35Cl? quadrupole relaxation was measured in the presence of metal-free alkaline phosphatase and in the presence of Zn2+-alkaline phosphatase. The relaxation data show that for an enzyme containing the minimum amount of zinc needed for full activity—2 g atoms of zinc per mole of protein—there appears to be no binding of halide ions to the protein-bound zinc ions. In contrast, when there is a high metal-enzyme ratio, a large relaxation enhancement is observed, demonstrating coordination of halide ions to the metal ions.Addition of inorganic phosphate causes no change in the 35Cl? relaxation in the presence of metal-free enzyme. However, marked decreases in relaxation are observed upon addition of phosphate to the Zn2+-alkaline phosphatase. The relaxation measurements carried out in the presence of phosphate show that substrate binding does prove to be metal-ion dependent. Furthermore, experiments with inorganic phosphate suggest the tight binding of one phosphate to the alkaline phosphatase.  相似文献   

19.
The molecular basis of the binding of the lipophilic antifolate compound fluoronitropyrimethamine [2,4-diamino-5-(4-fluoro-3-nitrophenyl)-6-ethylpyrimidine] to its target enzyme dihydrofolate reductase has been investigated using a combination of 19F NMR spectroscopy and molecular mechanical calculations. 19F NMR reveals the presence of two different conformational states for the fluoronitropyrimethamine-Lactobacillus casei enzyme complex. MM2 molecular mechanical calculations predict restricted rotation about the C5-C1′ bond of the ligand and this gives rise to two slowly interconverting rotamers which are an enantiomeric pair. The results of 19F NMR spectroscopy reveal that both these isomers bind to the enzyme, with different affinities. There is no detectable interconversion of the bound rotamers themselves on the NMR timescale. The effect of the addition of co-enzyme to the sample is to reverse the preference the enzyme has for each rotamer.  相似文献   

20.
The (19)F NMR spectra of the 5F-Trp labeled glutathione-S-transferase fusion protein with residues 282-595 of the human estrogen receptor show that there is a distinct conformational change in the protein when estradiol is added to the unliganded protein. Our studies show the empty receptor to have more conformational flexibility than the liganded form. This study shows the applicability of (19)F NMR to study conformational change in large protein systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号