首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olzmann JA  Chin LS 《Autophagy》2008,4(1):85-87
Pathological inclusions containing misfolded proteins are a prominent feature common to many age-related neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In cultured cells, when the production of misfolded proteins exceeds the capacity of the chaperone refolding system and the ubiquitin-proteasome degradation pathway, misfolded proteins are actively transported along microtubules to pericentriolar inclusions called aggresomes. The aggresomes sequester potentially toxic misfolded proteins and facilitate their clearance by autophagy. The molecular mechanism(s) that targets misfolded proteins to the aggresome-autophagy pathway is mostly unknown. Our recent work identifies parkin-mediated K63-linked polyubiquitination as a signal that couples misfolded proteins to the dynein motor complex via the adaptor protein histone deacetylase 6 and thereby promotes sequestration of misfolded proteins into aggresomes and subsequent clearance by autophagy. Our findings provide insight into the mechanisms underlying aggresome formation and suggest that parkin and K63-linked polyubiquitination may play a role in the autophagic clearance of misfolded proteins.  相似文献   

2.
Polyubiquitination of misfolded proteins, especially K63-linked polyubiquitination, is thought to be associated with the formation of inclusion bodies. However, it is not well explored whether appropriate editing of the different types of ubiquitin linkages by deubiquitinating enzymes (DUBs) affects the dynamics of inclusion bodies. In this study, we report that a specific DUB, ataxin-3, is required for the efficient recruitment of the neurodegenerative disease-associated protein copper-zinc superoxide dismutase (SOD1) to aggresomes. The overexpression of ataxin-3 promotes mutant SOD1 aggresome formation by trimming K63-linked polyubiquitin chains. Moreover, knockdown of ataxin-3 decreases mutant SOD1 aggresome formation and increases cell death induced by mutant SOD1. Thus, our data suggest that the sequestration of misfolded SOD1 into aggresomes, which is driven by ataxin-3, plays an important role in attenuating protein misfolding-induced cell toxicity.  相似文献   

3.
Lewy bodies (LBs) are the pathologic hallmark of Parkinson's disease. Recent studies revealed that LBs exhibit several morphologic and molecular similarities to aggresomes. Aggresomes are perinuclear aggregates representing intracellular deposits of misfolded proteins. Recently, valosin-containing protein (VCP) was one of the components of LBs, suggesting its involvement in LB formation. Here, we showed the localization of VCP in aggresomes induced by a proteasome inhibitor in cultured cells. Cells overexpressing mutant VCP (K524M: D2) showed reduced aggresome formation relative to those overexpressing wild-type and mutant (K251M: D1) VCPs. Our findings suggest that the D2 domain is involved in aggresome formation.  相似文献   

4.
Parkinson disease is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of intracytoplasmic-ubiquitinated inclusions (Lewy bodies). Mutations in alpha-synuclein (A53T, A30P) and parkin cause familial Parkinson disease. Both these proteins are found in Lewy bodies. The absence of Lewy bodies in patients with parkin mutations suggests that parkin might be required for the formation of Lewy bodies. Here we show that parkin interacts with and ubiquitinates the alpha-synuclein-interacting protein, synphilin-1. Co-expression of alpha-synuclein, synphilin-1 and parkin result in the formation of Lewy-body-like ubiquitin-positive cytosolic inclusions. We further show that familial-linked mutations in parkin disrupt the ubiquitination of synphilin-1 and the formation of the ubiquitin-positive inclusions. These results provide a molecular basis for the ubiquitination of Lewy-body-associated proteins and link parkin and alpha-synuclein in a common pathogenic mechanism through their interaction with synphilin-1.  相似文献   

5.
6.
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown. To identify new Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ubiquitin conjugation factor UBE4B as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated colocalization by proximity ligation assay and confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and the induction of NF-κB target genes in T cells and ATLL cell lines. Furthermore, depletion of UBE4B with shRNA resulted in apoptotic cell death and diminished the proliferation of ATLL cell lines. Finally, overexpression of UBE4B enhanced Tax polyubiquitination, and knockdown or CRISPR/Cas9-mediated knockout of UBE4B attenuated both K48- and K63-linked polyubiquitination of Tax. Collectively, these results implicate UBE4B in HTLV-1 Tax polyubiquitination and downstream NF-κB activation.  相似文献   

7.
W Cui  N Xiao  H Xiao  H Zhou  M Yu  J Gu  X Li 《Molecular and cellular biology》2012,32(19):3990-4000
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-β-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and β-TrCP. Knockdown of β-TrCP1 and β-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, β-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of β-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.  相似文献   

8.
Chew KC  Matsuda N  Saisho K  Lim GG  Chai C  Tan HM  Tanaka K  Lim KL 《PloS one》2011,6(5):e19720

Background

Mutations in the parkin gene, which encodes a ubiquitin ligase (E3), are a major cause of autosomal recessive parkinsonism. Although parkin-mediated ubiquitination was initially linked to protein degradation, accumulating evidence suggests that the enzyme is capable of catalyzing multiple forms of ubiquitin modifications including monoubiquitination, K48- and K63-linked polyubiquitination. In this study, we sought to understand how a single enzyme could exhibit such multifunctional catalytic properties.

Methods and Findings

By means of in vitro ubiquitination assays coupled with mass spectrometry analysis, we were surprised to find that parkin is apparently capable of mediating E2-independent protein ubiquitination in vitro, an unprecedented activity exhibited by an E3 member. Interestingly, whereas full length parkin catalyzes solely monoubiquitination regardless of the presence or absence of E2, a truncated parkin mutant containing only the catalytic moiety supports both E2-independent and E2-dependent assembly of ubiquitin chains.

Conclusions

Our results here suggest a complex regulation of parkin''s activity and may help to explain how a single enzyme like parkin could mediate diverse forms of ubiquitination.  相似文献   

9.
MHC class I molecules display peptides from endogenous and viral proteins for immunosurveillance by cytotoxic T lymphocytes (CTL). The importance of the class I pathway is emphasised by the remarkable strategies employed by different viruses to downregulate surface class I and avoid CTL recognition. The K3 gene product from Kaposi's sarcoma-associated herpesvirus (KSHV) is a viral ubiquitin E3 ligase which ubiquitinates and degrades cell surface MHC class I molecules. We now show that modification of K3-associated class I by lysine-63-linked polyubiquitin chains is necessary for their efficient endocytosis and endolysosomal degradation and present three lines of evidence that monoubiquitination of class I molecules provides an inefficient internalisation signal. This lysine-63-linked polyubiquitination requires both UbcH5b/c and Ubc13-conjugating enzymes for initiating mono- and subsequent polyubiquitination of class I, and the clathrin-dependent internalisation is mediated by the epsin endocytic adaptor. Our results explain how lysine-63-linked polyubiquitination leads to degradation by an endolysosomal pathway and demonstrate a novel mechanism for endocytosis and endolysosomal degradation of class I, which may be applicable to other receptors.  相似文献   

10.
The BRCA1 tumor suppressor forms a heterodimer with the BARD1 protein, and the resulting complex functions as an E3 ubiquitin ligase that catalyzes the synthesis of polyubiquitin chains. In theory, polyubiquitination can occur by isopeptide bond formation at any of the seven lysine residues of ubiquitin. The isopeptide linkage of a polyubiquitin chain is a particularly important determinant of its cellular function, such that K48-linked chains commonly target proteins for proteasomal degradation, while K63 chains serve non-proteolytic roles in various signaling pathways. To determine the isopeptide linkage formed by BRCA1/BARD1-dependent polyubiquitination, we purified a full-length heterodimeric complex and compared its linkage specificity with that of E6-AP, an E3 ligase known to induce proteolysis of its cellular substrates. Using a comprehensive mutation analysis, we found that E6-AP catalyzes the synthesis of K48-linked polyubiquitin chains. In contrast, however, the BRCA1/BARD1 heterodimer directs polymerization of ubiquitin primarily through an unconventional linkage involving lysine residue K6. Although heterologous substrates of BRCA1/BARD1 are not known, BRCA1 autoubiquitination occurs principally by conjugation with K6-linked polymers. The ability of BRCA1/BARD1 to form K6-linked polyubiquitin chains suggests that it may impart unique cellular properties to its natural enzymatic substrates.  相似文献   

11.
Members of the Pellino family are interleukin-1 receptor-associated kinase (IRAK)-interacting proteins that possess RING-like domains. The presence of these domains led to the suggestion that Pellino proteins are ubiquitin-protein isopeptide ligases (E3). However, no conclusive data currently exist to prove this proposal. This study provides the first direct evidence that Pellino proteins possess E3 activity. Recombinant forms of Pellino1 and Pellino2 and both spliced variants of Pellino3 are shown in an in vitro ubiquitination assay to be E3 ligases that catalyze Lys(63)-linked polyubiquitination, with Pellino3 exhibiting the greatest ligase activity. Whereas the Pellino proteins cause polyubiquitination of IRAK-1, we also show that kinase-active members of the IRAK family (IRAK-1 and IRAK-4) promote reciprocal polyubiquitination of the Pellino proteins and that this is associated with IRAK-induced degradation of the Pellino family. In contrast, IRAK-2 (which lacks a functional kinase domain) and kinase-dead forms of IRAK-1 and IRAK-4 fail to degrade the Pellino proteins. We show that these kinase-inactive IRAK proteins can associate with Pellino proteins, thus excluding the possibility that their inability to regulate Pellino degradation is due to lack of association with the Pellino proteins. The physiological relevance of IRAK-induced degradation of Pellino proteins is confirmed by the demonstration that lipopolysaccharide causes degradation of endogenous forms of Pellino3 in peripheral blood mononuclear cells. In summary, this study not only demonstrates Pellino proteins to be E3 ligases that can catalyze Lys(63)-linked polyubiquitination but also shows bidirectional signaling between the IRAK and Pellino families and highlights a novel function for IRAK kinase activity.  相似文献   

12.
Lys63-linked TAK1 polyubiquitination plays an essential role in the regulation of TAK1 activation. TRAF6-mediated Lys63-linked polyubiquitylation of TAK1 has been shown to be required for TGF-β-induced TAK1 activation. However, it remains unclear which lysine residue on TAK1 is TRAF6-mediated TAK1 polyubiquitination acceptor site in TGF-β signaling pathway. Here we report that lysine 158 on TAK1 is required for TGF-β-induced TRAF6-mediated TAK1 polyubiquitination and TAK1-mediated IKK, JNK and p38 activation. Notably, in contrast to TAK1 wild-type and K34R mutant, TAK1 K158R mutant co-overexpression with TAB1 failed to induce Lys63-linked TAK1 polyubiquitination. TRAF6-induced K63-linked TAK1 polyubiquitination was blocked by TAK1 K158R mutation, but not by K34R mutation. Furthermore, TGF-β-induced TAK1 polyubiquitination was inhibited by TAK1 K158R mutation, but not by K34R mutation in HeLa cells. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild-type, K158R mutant, or K34R mutant reveals that TAK1 lysine 158 residue is required for TGF-β-induced IKK, p38 and JNK activation.  相似文献   

13.
Parkinson's disease (PD) is one of the most common movement disorders with loss of dopaminergic neurons and the presence of Lewy bodies in certain brain areas. However, it is not clear how Lewy body (inclusion with protein aggregation) formation occurs. Mutations in leucine-rich repeat kinase 2 (LRRK2) can cause a genetic form of PD and contribute to sporadic PD with the typical Lewy body pathology. Here, we used our recently identified LRRK2 GTP-binding inhibitors as pharmacological probes to study the LRRK2-linked ubiquitination and protein aggregation. Pharmacological inhibition of GTP-binding by GTP-binding inhibitors (68 and Fx2149) increased LRRK2-linked ubiquitination predominantly via K27 linkage. Compound 68- or Fx2149 increased G2019S-LRRK2-linked ubiquitinated aggregates, which occurred through the atypical linkage types K27 and K63. Coexpression of K27R and K63R, which prevented ubiquitination via K27 and K63 linkages, reversed the effects of 68 and Fx2149. Moreover, 68 and Fx2149 also promoted G2019S-LRRK2-linked aggresome (Lewy body-like inclusion) formation via K27 and K63 linkages. These findings demonstrate that LRRK2 GTP-binding activity is critical in LRRK2-linked ubiquitination and aggregation formation. These studies provide novel insight into the LRRK2-linked Lewy body-like inclusion formation underlying PD pathogenesis.  相似文献   

14.
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.  相似文献   

15.
16.
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation.  相似文献   

17.
The histopathological hallmark of Parkinson’s disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin–proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.  相似文献   

18.
Paramyxovirus V proteins block Toll-like receptor 7 (TLR7)- and TLR9-dependent signaling leading to alpha interferon production. Our recent study has provided evidence that interaction of the V proteins with IRF7 is important for the blockade. However, the detailed mechanisms still remain unclear. Here we reexamined the interaction of the human parainfluenza virus type 2 (HPIV2) V protein with signaling molecules involved in TLR7/9-dependent signaling. Immunoprecipitation experiments in HEK293T cells transfected with V protein and one of the signaling molecules revealed that the V protein interacted with not only IRF7 but also TRAF6, IKKα, and MyD88. Whereas overexpression of TRAF6 markedly enhanced the level of V protein associating with IRF7, IKKα, and MyD88 in HEK293T cells, the level of V protein associating with TRAF6 was little affected by overexpression of IRF7, IKKα, and MyD88. Moreover, knockdown or knockout of endogenous TRAF6 in HEK293T or mouse embryonic fibroblast cells resulted in dissociation of the V protein from IRF7, IKKα, and MyD88. These results demonstrate that binding of the V protein to IRF7, IKKα, and MyD88 is largely indirect and mediated by endogenous TRAF6. It was found that the V protein inhibited TRAF6-mediated lysine 63 (K63)-linked polyubiquitination of IRF7, which is prerequisite for IRF7 activation. Disruption of the tryptophan-rich motif of the V protein significantly affected its TRAF6-binding efficiency, which correlated well with the magnitude of inhibition of K63-linked polyubiquitination and the resultant activation of IRF7. Taken together, these results suggest that the HPIV2 V protein prevents TLR7/9-dependent interferon induction by inhibiting TRAF6-mediated K63-linked polyubiquitination of IRF7.  相似文献   

19.
Parkinson’s disease (PD) is a devastating neurodegenerative disease characterized by a distinct set of motor symptoms. Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) or parkin have been linked to early-onset autosomal recessive forms of familial PD. We have recently shown that parkin (an E3 ubiquitin ligase) and PINK1 (a serine/threonine kinase) affect one other’s stability, solubility, and tendency to form cytoprotective aggresomes (Um et al., 2009, [16]). Here we validated the functional relevance of this mutual interaction under pathologic PD conditions, by investigating the changes of expression and solubility of these factors in response to PD-linked toxins. Consistent with our previous cell culture data, exposure of human dopaminergic neuroblastoma SH-SY5Y cells to PD-linked toxins (1-methyl-4-phenylpyridinium ion, 6-hydroxydopamine, or MG132) reduced Nonidet P-40-soluble parkin levels and induced PINK1 accumulation. Consistent with our previous findings from parkin knockout mice, rat models of PD (6-hydroxydopamine-, rotenone-, or MG132-induced PD) were also associated with an increase in soluble and insoluble PINK1 levels as well as enhanced formation of parkin aggregates. These findings suggest that both PINK1 and parkin play important roles in regulating the formation of Lewy bodies during the pathogenesis of sporadic and familial PD.  相似文献   

20.
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号