首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was designed to characterize the compensatory ovarian response to unilateral ovariectomy (ULO) in prepuberal gilts and to investigate further the mechanisms involved in compensatory ovarian hypertrophy (COH). Forty-eight crossbred gilts were sham ovariectomized (Sham) or unilaterally ovariectomized at 130 days of age (Day 0). Remaining ovaries in ULO gilts were removed and Sham gilts were bilaterally ovariectomized 2, 4 or 8 days later. A peripheral blood sample was taken before surgery and ovarian venous blood samples were taken before removal of each ovary. Serum estradiol-17 beta (E2) concentrations were determined. Mean wet and dry ovarian weights per ovary on Day 2 for ULO and Sham gilts were 3.4 versus 2.8 and 0.26 versus 0.24 g, respectively. Those weights on Days 4 and 8 were greater (P less than 0.01) for ULO than Sham gilts. Follicular fluid weight per ovary was greater (P less than 0.05) for ULO than Sham gilts on Days 2, 4 and 8. Ovarian venous E2 concentrations were greater (P less than 0.01) for ULO than for Sham gilts on Days 2 and 4 but were similar on Day 8. In a second experiment, 42 prepuberal gilts 130 days of-age were subjected to Sham (n = 18), ULO (n = 18) or bilateral ovariectomy (BLO; n = 6) to evaluate follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion immediately after surgical treatment. Release of FSH within the first 24 h was greater for BLO than ULO and for ULO than Sham gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A study was conducted to determine the effect of unilateral ovariectomy (ULO) on follicle stimulating hormone (FSH) secretion and compensatory ovarian hypertrophy in prepubertal ewes. Thirty-three ewe lambs were allotted according to age and weight to a control (C) or ULO group. In the C group, a sham ovariectomy was performed on day 0 and both ovaries were removed on day 7. In the ULO group, one ovary was removed on day 0 and the remaining ovary was removed on day 7. Blood samples were collected from the jugular vein via venipuncture at 0, 6, 12 and 24 hours after the time of sham surgery or ULO (day 0). Subsequent samples were collected daily until day 7, and all samples were assayed for FSH and LH. Unilateral ovariectomy increased (P<0.01) ovarian weight and follicular fluid weight; however, lyophilized ovarian weight was similar for both groups. Within the ULO group, removal of the ovary having the largest follicle(s) did not prevent an increase in ovarian weight or follicular fluid weight of the remaining ovary. Unilateral ovariectomy had no effect on the total number of follicles (1 to 6 mm) per ovary; however, the number of large (5 to 6 mm) follicles per ovary was increased (P<0.05) following ULO. By 12 hours after ULO there was a transient increase (P<0.05) in the circulating concentrations of FSH. Circulating concentrations of luteinizing hormone (LH) were either low or undetectable in these prepubertal ewes and no LH response was observed following ULO. These results indicate that compensatory ovarian hypertrophy in ULO prepubertal ewes is accompanied by a transient rise in circulating FSH concentrations.  相似文献   

3.
Antiserum against gonadotrophin-releasing hormone (GnRH) was infused into one ovary in 4 prepubertal gilts and control porcine serum was infused into one ovary in 4 other gilts. Ovaries were infused for 156 h, after which infused and non-infused ovaries were removed surgically and processed for histology. Infusion of GnRH antibodies did not alter (P greater than 0.10) concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) or oestradiol-17 beta, and GnRH titres in peripheral circulation were low, averaging 1:15. Weights of ovaries not infused were similar (P greater than 0.10) between treatment groups. There were fewer (P less than 0.05) follicles greater than 0.5 mm in diameter in the ovaries infused with GnRH antiserum than in the others, but there were no differences (P greater than 0.10) between treatment groups in the number of follicles less than 0.5 mm in diameter. Infusion of GnRH antibodies increased (P less than 0.05) the incidence of atresia in follicles with greater than 4 layers of granulosa cells compared with the other treatment groups. These results provide evidence that a peptide binding to the GnRH antibodies is involved directly in ovarian follicular development.  相似文献   

4.
Sexually mature gilts were actively immunized against gonadotropin-releasing hormone (GnRH) by conjugating GnRH to bovine serum albumin, emulsifying the conjugate in Freund's adjuvant, and giving the emulsion as a primary immunization at Week 0 and as booster immunizations at Weeks 10 and 14. Antibody titers were evident by 2 wk after primary immunization and increased markedly in response to booster immunizations. Active immunization against GnRH caused gonadotropins to decline to nondetectable levels, gonadal steroids to decline to basal levels, and the gilts to become acyclic. Prolactin concentrations in peripheral circulation were unaffected by immunization against GnRH. The endocrine status of the hypothalamic-pituitary-ovarian axis was examined by giving GnRH and two agonists to GnRH and by ovariectomy. An i.v. injection of 100 micrograms GnRH caused release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in control animals, but not in gilts immunized against GnRH. In contrast, administration of 5 micrograms D-(Ala6, des-Gly-NH2(10] ethylamide or 5 micrograms D-(Ser-t-But6, des-Gly-NH2(10] ethylamide resulted in immediate release of LH and FSH in both control and GnRH-immunized gilts. Circulating concentrations of LH and FSH increased after ovariectomy in the controls, but remained at nondetectable levels in gilts immunized against GnRH. Prolactin concentrations did not change in response to ovariectomy. We conclude that cyclic gilts can be actively immunized against GnRH and that this causes cessation of estrous cycles and inhibits secretion of LH, FSH, and gonadal steroids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aim was to investigate the effect of infusion of purified FSH alone on follicle development in hypogonadotrophic GnRH agonist-treated gilts. Large-White hybrid gilts (n = 12) were treated during the mid-luteal phase and again after 28 days (day 0) with a potent slow releasing GnRH agonist. On day 3, seven gilts were infused for 168 h with 1.5 S1 units oFSH h-1 (equivalent to 1.5 units of bioactivity of NIH-FSH-S1 standard) and blood samples were collected. Ovaries were then recovered and all follicles > or = 1 mm in diameter were dissected and incubated for 2 h in 1 ml Eagle's minimum essential medium. The ovaries were recovered from the remaining five GnRH agonist-treated gilts on day 10 and also from five cyclic gilts during the late follicular phase (controls). Plasma FSH concentrations in GnRH agonist-treated gilts were lower (P < 0.01) than in follicular phase controls, increased (P < 0.001) after 1 h of FSH infusion and reached a plateau similar (P > 0.1) to that of controls after 8 h. Basal LH concentrations were similar (P > 0.1) between GnRH agonist-treated and control gilts and remained unchanged (P > 0.1) throughout the infusion period. GnRH agonist treatment reduced (P < 0.01) basal oestradiol concentrations compared with control gilts. Infusion with FSH alone increased (P < 0.001) plasma oestradiol concentrations after 96 h compared with those before infusion; when the animals were killed oestradiol concentrations were higher (P < 0.01) in GnRH agonist-treated gilts infused with FSH than in controls. This was also apparent by vulval swelling and behavioural oestrus. There were more follicles > or 1 mm in diameter in the GnRH agonist-treated groups than in the controls (184, 153 and 86 per animal; P < 0.01). Infusion with FSH increased the maximum follicle diameter (GnRH agonist: < 4 mm; FSH infused: < 12 mm; controls: < 10 mm) and tended to increase (P < 0.07) the mean number of follicles > or = 6 mm diameter per animal (FSH infused: 53; controls: 21). Total oestradiol production in vitro by follicles > or = 1 mm was higher (P < 0.01) in GnRH agonist-treated gilts infused with FSH and in follicular phase controls than in animals treated with GnRH agonist alone. However, oestradiol and testosterone secretion in vitro per follicle > or = 6 mm in diameter was lower (P < 0.05) in FSH-infused animals than in controls. In summary, although infusion of FSH alone stimulated the growth of multiple follicles of preovulatory size in GnRH agonist-treated gilts, steroidogenic output by individual follicles was impaired.  相似文献   

6.
To examine a role for inhibin in compensatory ovarian hypertrophy after unilateral ovariectomy (ULO) of prepubertal gilts, changes in inhibin activity in ovarian venous blood were estimated by bioassay. Three groups of 130-day-old gilts were unilaterally ovariectomized after collecting blood from an ipsilateral ovarian vein (Day O); blood samples were obtained from the remaining ovary on Day 2, 4, or 8. Coetaneous gilts underwent sham ovariectomy on Day 0, and venous blood was collected from both ovaries on Day 2, 4, or 8. An assay for inhibin activity, which measured inhibition of secretion of follicle-stimulating hormone (rFSH) by rat pituitary cells in culture, was validated for serum samples. Presumptive inhibin activity was always greater in ovarian venous serum than in peripheral serum samples. In the ULO groups, inhibin activity (in terms of a house reference preparation) in ovarian venous serum was 55 +/- 13 micrograms/ml (means +/- SE, n = 13) on Day 0, 251 +/- 79 (n = 5) on Day 2, 275 +/- 111 (n = 4) on Day 4, and 68 +/- 14 micrograms/ml (n = 4) on Day 8. The five-fold increases on Days 2 and 4 were significant (p less than 0.05). In contrast, no significant differences in inhibin activity were detected between ovarian venous serum (within gilts) or between Days 2, 4, and 8: 82 +/- 29, 73 +/- 30, and 99 +/- 48 micrograms/ml (n=4/day) in control groups. These results demonstrate that, in prepubertal gilts, the remaining ovary's response to ULO includes a major increase in release of inhibin-like activity.  相似文献   

7.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of chronic exposure to elevated environmental temperature on gonadotropin secretion and ovarian function was studied in prepubertal gilts. Gilts were maintained under control (15.6 degrees C) or elevated temperature (33.3 degrees C) conditions from 150 to 180 days of age. Endocrine and ovarian responses to bilateral (BLO), unilateral (ULO), and sham ovariectomy were evaluated between 175 and 180 days of age. During the 96-h sampling period after BLO, plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were suppressed in heat-stressed females. Similarly, elevated temperatures abolished the transient rise in FSH and subsequent follicular growth normally associated with ULO. In contrast, environmental treatment had no effect on the secretion of FSH and LH after sham ovariectomy, yet the number of small follicles was lower in gilts exposed to elevated temperatures than in females maintained under control conditions. These results indicate that a chronic exposure to elevated environmental temperature during pubertal development diminished the ability of the hypothalamo-hypophyseal axis to secrete FSH and LH, which had physiological consequences on follicular growth. When provided an appropriate stimulus (ULO), an acute period of FSH secretion and subsequent development of follicles failed to occur in females exposed to elevated temperatures. Consequently, we propose that delayed puberty in gilts during periods of elevated environmental temperatures is due, in part, to a diminished capacity for gonadotropin secretion.  相似文献   

9.
A horizontal knife cut was placed between the dorsal anterior hypothalamic area (DAHA) and the medial basal hypothalamus to examine the role of the DAHA in the selective secretion of follicle-stimulating hormone (FSH) following unilateral ovariectomy (ULO) and bilateral ovariectomy of the rat. Complete cuts markedly attenuated the increase in FSH observed 8 h after ULO, whereas incomplete or sham cuts did not. Concentration of luteinizing hormone (LH) did not increase in any group. These cuts also blocked the prolongation of estrous FSH secretion observed in long-term hemicastrated rats, since FSH levels on estrus were significantly lower in rats with complete cuts than in those rats given sham or incomplete cuts. In contrast, neural surgery had no effect on proestrous FSH concentrations. Finally, when FSH levels were monitored 2 days after bilateral ovariectomy, the postcastration rise in FSH was not altered by any neurosurgical procedures. These results support the hypothesis that a neural system originating in, or passing through, the DAHA is necessary for the selective increase in FSH following ULO.  相似文献   

10.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

11.
This study examined the influences of aging and reduced ovarian follicular reserve on estrous cyclicity, estradiol (E(2)) production, and gonadotropin secretion. Young virgin and middle-aged (MA) retired breeder female rats were unilaterally ovariectomized (ULO) or sham operated (control). Unilateral ovariectomy of young rats reduced the ovarian follicular reserve by one-half, to a level similar to that found in MA controls. Unilateral ovariectomy of MA females reduced the follicular pool further, to one half of MA controls. The incidence of regular cyclicity was significantly lower in MA ULO females than in young controls, with intermediate cycle frequency in young ULO and MA controls. Among cyclic rats, the magnitude of the proestrous LH surge was highest in young controls, intermediate in young ULO rats and MA controls, and lowest in MA ULO females. Similarly, ovulation rates were highest in young controls, intermediate in young ULO rats and MA controls, and lowest in MA ULO females. While young ULO rats exhibited augmented secondary FSH surges on estrous morning, middle-aged ULO females displayed secondary FSH levels comparable to young controls. The effects of age and reduced follicle number on estrous cyclicity and gonadotropin secretion were not due to altered E(2) secretion, as preovulatory E(2) levels were similar among all groups. Thus, experimental reduction in the follicular reserve exerts acute effects on the preovulatory LH surge, ovulation rate, and estrous cyclicity in both young and MA rats. However, decreased follicle number increases FSH levels only in young rats, indicating aging-related alterations in the feedback regulation of FSH.  相似文献   

12.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) to determine the relative importance of this hypothalamic hormone in the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Five mares immunized against the conjugation protein served as controls. Mares were initially immunized in November and received secondary immunizations 4 wk later, and then at 6-wk intervals until ovariectomy in June. All mares immunized against GnRH exhibited an increase (p less than 0.01) in the binding of tritiated GnRH by plasma, an indication that antibodies against this hormone had been elicited. Concentrations of LH, FSH and progesterone in weekly blood samples were lower (p less than 0.05) in GnRH-immunized mares than in controls after approximately 4 mo of immunization. However, the LH concentrations were affected to a greater degree than were FSH concentrations. All five control mares exhibited normal cycles of estrus and diestrus in spring, whereas no GnRH-immunized mare exhibited cyclic displays of estrus up to ovariectomy. All mares were injected intravenously with a GnRH analog (which cross-reacted less than 0.1% with the anti-GnRH antibodies) in May, after all control mares had displayed normal estrous cycles, to characterize the response of LH and FSH in these mares; two days later, the mares were injected with GnRH. The LH response to the analog, which was assessed by net area under the curve, was lower (p less than 0.01) by approximately 99% in mares immunized against GnRH than in control mares. In contrast, the FSH response to the analog was similar for both groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

14.
Compensatory responses after unilateral ovariectomy in rabbits   总被引:1,自引:0,他引:1  
Compensatory ovarian and gonadotropic responses to unilateral ovariectomy (ULO) were examined in the rabbit doe, an induced ovulator. On Days 2, 4, 5, 6, 8, 10, 15 and 20 after ULO, ovaries from 3 hemiovariectomized does and 1 sham-hemiovariectomized doe were examined macro- and microscopically for number, size and signs of atresia of follicles. The number of surface follicles increased initially to 7 or 8 follicles 2 days after ULO, followed by an increase to 10 or more follicles by Day 15 (control ovaries had 5.7 +/- 0.4 follicles). Total numbers of antral follicles and the proportion of follicles which were atretic did not vary relative to day after ULO. However, distributions of antral follicles in classes of 0.2-mm increments were significantly different between sham-ovariectomized and hemiovariectomized does after Day 2 due to shifts of follicles into larger size classes. Peripheral serum concentrations of follicle-stimulating hormone (FSH), but not luteinizing hormone (LH), increased temporarily during the 48 h after ULO. Follicular compensation after ULO in the doe entailed nonlinear increases in numbers of preovulatory follicles, due to increased growth within the antral population of follicles, probably the result of an acute surge of FSH. A period of more than 10 days was necessary to restore the number of preovulatory follicles after ULO. Exogenous human chorionic gonadotropin (hCG) induced ovulation of recruited follicles.  相似文献   

15.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

16.
The aim of the current experiment was to study the regulation of follicle development in the pig using a potent GnRH agonist (GnRH-A) to initially suppress follicle development. Large-White hybrid gilts (n = 8) were treated during the luteal phase with GnRH-A. Four of these GnRH-A treated gilts and four control gilts were given a GnRH bolus on days 14 and 28 after GnRH-A administration or during the luteal phase in control gilts. Blood samples were collected for 10 h for FSH and LH, after which 1500 IU PMSG were administered and the ovaries and uteri recovered 72 h later. A further four GnRH-A treated gilts and four control gilts were slaughtered either 28 days after GnRH-A administration or during the luteal phase respectively, and all follicles > or = 1 mm diameter were dissected. The mean basal plasma FSH level was lower (P < 0.01) in GnRH-A treated than control gilts and showed no response to the GnRH challenge although levels increased (P < 0.01) in control gilts. The mean basal plasma LH levels were similar (P > 0.1) in GnRH-A treated and control gilts. Whilst in GnRH-A treated gilts plasma LH levels showed no response to the GnRH challenge, plasma LH levels were increased (P < 0.01) in control gilts. Pulsatile LH secretion was abolished in GnRH-A treated but not in control gilts. Plasma oestradiol levels were lower (P < 0.001) in GnRH-A treated gilts than in control gilts, but nevertheless both GnRH-A treated and control gilts responded to PMSG with increased plasma oestradiol levels. Treatment with GnRH-A reduced both the mean (2.1 vs. 2.7 mm; P < 0.01) and the maximal follicle diameter (4 vs. 6 mm) and reduced (P < 0.01) the total number of follicles > or = 2 mm diameter compared with control gilts. Administration of PMSG increased both mean follicle diameter (5.1 vs. 4.4 mm; P < 0.01) and maximal follicle diameter (7 vs. 9 mm) and caused a reduction (P < 0.001) in the total number of follicles > or = 2 mm diameter in both GnRH-A treated and control gilts. In summary, this study has demonstrated, for the first time in the pig, that the inhibition of follicle development as a result of pituitary down regulation/desensitisation can be reversed by exogenous gonadotrophin treatment. This model will be a powerful tool with which to investigate the precise regulation of follicle development in the pig.  相似文献   

17.
A study was conducted to evaluate the effectiveness of gonadotropin-releasing hormone (GnRH) pulse infusion to stimulate follicular development and induce ovulation in seasonally anestrous standardbred mares. Seventeen mares were selected for use in this experiment, on the basis of a previous normal reproductive history, and were housed under a photoperiod of 8L:16D beginning one week prior to the start of the experiment (second week in January). Mares were infused with 20 micrograms (n = 7) or 2 micrograms (n = 6) GnRH/h, or were subjected to photoperiod treatment only (controls, n = 4). Serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and progesterone did not vary, and neither significant follicular development nor ovulation was observed in any control mare throughout the experimental period (greater than 60 days). By contrast, both groups of GnRH-treated mares showed elevated serum concentrations of LH and FSH within one day after the start of infusion. Mares infused with 20 micrograms GnRH/h had at least one follicle greater than or equal to 25 mm in 7.4 +/- 1.3 (mean +/- SEM) days following the start of infusion, and ovulated in 12.0 +/- 0.7 days. In the 2-microgram-GnRH/h treatment group, a 25-mm follicle was detected in 5.7 +/- 0.7 days, and ovulation occurred after 10.0 +/- 0.3 days of infusion. Ovulation in every instance was followed by a functional luteal phase, as indicated by the profiles of progesterone secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
L V Swanson  S K McCarthy 《Steroids》1986,47(2-3):101-114
A significant dose-response relationship between gonadotropin-releasing hormone (GnRH) and time to luteinizing hormone (LH) peak, peak serum LH and total serum LH was obtained in prepubertal Holstein heifers (28 weeks of age) (Experiment 1). For the second experiment, the effect of steroid feedback on the anterior pituitary was determined. A steady infusion of saline, estradiol-17 beta or progesterone was maintained for 24 h while GnRH, in various schemes, was administered 8 h after the beginning of steroid infusion. Estradiol-17 beta infusion (2.08 micrograms/h), although it did not affect peripheral concentrations of estrogen, caused an LH release 24 to 30 h later in 37.5% of the heifers. This amount of exogenous estrogen did not affect the LH response to a single GnRH (4 micrograms) challenge. When the same GnRH dosage (4 micrograms) was administered 6 times at hourly intervals, the heifers infused with estradiol had a lower response after the first 2 injections of GnRH and a greater response after the last 4 injections than heifers infused with saline. When GnRH was infused (4 micrograms/h) for 6 h, beginning 8 h after steroid infusion, estradiol infusion caused a significantly higher peak LH and total LH release than an infusion of either saline or progesterone (7.3 micrograms/h). The progesterone infusion had no effect on the GnRH-stimulated LH release. We conclude that prepubertal dairy heifers have an anterior pituitary capable of responding to the feedback effect of estrogen in a positive manner.  相似文献   

19.
There is a monotypic change in basal serum gonadotropin levels following retinol treatment of chronically vitamin A-deficient (VAD) male rats. The present study was undertaken to investigate the hypothesis that the specific increase in serum follicle-stimulating hormone (FSH) represents a change in gonadotrope responsiveness to gonadotropin-releasing hormone (GnRH). To this end, a test dose of GnRH was given to VAD rats pre-, 5 days post-, and 10 days postreplacement of vitamin A (PVA). In VAD rats, basal serum FSH and luteinizing hormone (LH) levels were higher than those of controls. Increased LH/testosterone ratios, both in basal levels and in the secretory response to GnRH, suggested Leydig cell hyporesponsiveness in VAD animals. Both the FSH and LH responses to GnRH were maximal at 1 h, declining thereafter. Although the absolute increments in FSH and LH 1 h after GnRH in VAD rats were greater than in controls, the percent increase in FSH tended to be lower in VAD rats and to increase after vitamin A replacement. The specific enhancement of FSH release PVA became evident only when assessing total secretion of FSH and LH after GnRH. Luteinizing hormone response to GnRH increased PVA, but not significantly, while FSH secretion after GnRH increased both 5 and 10 days PVA, times during which basal FSH levels were also increasing. These changes in FSH secretion could not be attributed either to increases in endogenous GnRH or to changes in testosterone or estradiol levels. Basal serum androgen binding protein levels, elevated in VAD animals, did not respond to the acute increases in FSH after GnRH and remained high PVA, suggesting no acute change in Sertoli cell function. Thus, the PVA increase in FSH secretion unmasks a partial inhibition of the gonadotrope present in the retinol-deficient, retinoic acid-fed male rat.  相似文献   

20.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号