首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The evolutionary processes that take place in invasive plant populations are not well documented or understood. Interspecific hybridization between cultivated radish (Raphanus sativus) and R. raphanistrum is known to be responsible for the origin of the invasive California wild radish, but little is known about the nature of the hybridization events that produced the hybrid-derived lineage. We analyzed the trnL-rpl32 intergenic region of chloroplast DNA (cpDNA) obtained from 37 cultivated radish individuals from four different cultivars, 53 R. raphanistrum individuals from six European populations and 104 California wild radish individuals from 11 populations covering its entire range throughout the state. We found that cultivated radish and R. raphanistrum shared no cpDNA haplotypes but that they both shared haplotypes with California wild radish, evidence for bidirectional hybridization between the progenitor species in the creation of the California lineage. We also found evidence that multiple cultivars and multiple European source populations contributed to the diversity of cpDNA haplotypes within California. Studies like this will continue to be important for our understanding of the origin of invasive populations and the mechanisms by which they succeed.  相似文献   

2.
If two previously isolated taxa mutually assimilate through hybridization and subsequent biparental introgression, and if their introgressed descendants have the same or higher fitness than their parents, then gene flow should result in the local extinction of parental taxa via replacement by hybrid derivatives. These dramatic events may occur rapidly, even in a few generations. Given the speed at which such extinction by hybridization may occur, it may be difficult to identify that the process has occurred. Thus, documented instances of extinction by hybridization are rare, and especially so for cases in which both parents are replaced by the hybrid lineage. Here we report morphological and allozyme evidence for the local extinction of two Raphanus species in California via replacement by their hybrid-derived descendants. The results from a greenhouse experiment demonstrate that California wild radishes have a specific combination of traits from their progenitors, and comparison of our results to that of an earlier report indicate that pure parental types are no longer present in the wild. Our results also show the hybrid-derived lineage has transgressive fruit weight compared to its parents. Allozyme analysis demonstrates that California wild radishes are derived from hybridization between the putative parental species. However, that analysis also demonstrates that California wild radish has now become an evolutionary entity separate from both of its parents. We suggest that the aggressive colonizing behavior of the hybrid-derived lineage probably results from a novel combination of parental traits, rather than genetic variability of the population per se.  相似文献   

3.
Crop-wild hybridization may produce offspring with lower fitness than their wild parents due to deleterious crop traits and outbreeding depression. Over time, however, selection for improved fitness could lead to greater invasiveness of hybrid taxa. To examine evolutionary change in crop-wild hybrids, we established four wild ( Raphanus raphanistrum ) and four hybrid radish populations ( R. raphanistrum  ×  Raphanus sativus ) in Michigan (MI), USA. Hybrid and wild populations had similar growth rates over four generations, and pollen fertility of hybrids improved. We then measured hybrid and wild fitness components in two common garden sites within the geographical range of wild radish [MI and California (CA)]. Advanced generation hybrids had slightly lower lifetime fecundity than wild plants in MI but exhibited c. 270% greater lifetime fecundity and c. 22% greater survival than wild plants in CA. Our results support the hypothesis that crop-wild hybridization may create genotypes with the potential to displace parental taxa in new environments.  相似文献   

4.
Hybridization is hypothesized to promote invasiveness, but empirical tests comparing the performance of hybrid taxa versus parental taxa in novel regions are lacking. We experimentally compared colonization ability of populations of wild radish (Raphanus raphanistrum) with populations of advanced-generation hybrids between wild radish and cultivated radish (Raphanus sativus) in a southeast Texas pasture, well beyond the known invasive range of hybrid radish. We also manipulated the strength of interspecific competition to better generalize across variable environments. In both competitive environments, hybrid populations produced at least three times more seeds than did wild radish populations, a distinction that was driven by greater hybrid seedling emergence, earlier hybrid emergence, and more hybrid seedlings surviving to flower, rather than by greater individual fecundity. Flowering duration in hybrids was less negatively affected by competition than it was in wild radish, while early emergence was associated with subsequent high seed output in both biotypes. Our data show that hybridization can enhance colonization success in a novel region and, by comparison with previous studies, that the life-history traits enhancing hybrid success can differ across regions, even for lineages originating from the same hybridization event. These results imply a much larger arena for hybrid success than previously appreciated.  相似文献   

5.
Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre‐adapted to serpentine soils.  相似文献   

6.
卢宝荣  夏辉  汪魏  杨箫 《生物多样性》2010,18(6):577-1158
生物入侵给全球生态环境与社会经济都带来了严重危害, 对其入侵机制的研究非常重要。生物入侵是一个适应性进化的过程, 天然杂交与遗传渐渗可以改变外来物种对环境的适应性并提高其入侵能力, 使其进化成为入侵种。因此了解杂交-渐渗在促进生物入侵过程中的遗传作用, 将有助于我们采取有效措施来控制生物入侵及其危害。本文从杂交-渐渗对生物适应性进化和物种形成影响的角度, 阐明外来种如何通过杂交-渐渗在新的生境中改变其适应性、生存竞争能力和入侵能力。杂交-渐渗可以导致物种发生多倍体水平和同倍体水平的进化, 虽然二者的进化过程不尽相同, 但均能使杂种群体在遗传上产生较大变化, 进而影响杂种群体的适合度, 这一过程可能促使外来种在新的生境中的成功入侵进而转变为入侵种。随着转基因生物技术的迅速发展, 大量转基因作物进入环境释放和商品化种植, 具有特定功能的转基因可能通过杂交-渐渗进入野生近缘种群体, 也可能使之成为入侵性强的农田杂草, 带来难以预测的生态后果。总之, 生物入侵是一个复杂的进化和生态过程, 利用杂交-渐渗的理论来解释植物的入侵性, 仅从一个方面反映了入侵生物学的研究, 杂交-渐渗与其他理论的结合, 将从更深的层次来解释外来种的入侵机制。  相似文献   

7.
Pennisetum setaceum (Poaceae) is a perennial bunch grass that invaded the United States during the 20th century and is highly invasive in Hawaii, moderately invasive in Arizona, and not yet invasive in southern California. Pennisetum setaceum is apomictic, a condition that is normally associated with low genetic variation within populations, but even moderate levels of genetic variation among populations could account for differences in invasiveness. To determine whether genetic factors are causing the variable invasion success, we used Inter‐Simple Sequence Repeat markers (ISSRs) to examine genetic variation in populations from the three areas. Screening of 16 primers revealed no genetic variation within any population or between any geographical areas, a pattern consistent with complete apomixis. Variation in invasion success appears unrelated to genetic differences among populations. Differences in the seasonal timing of rainfall among the regions may be the cause of variable invasiveness of fountain grass. Alternatively, differences in timing of introduction or duration of lag phase may have limited invasiveness in Arizona and southern California.  相似文献   

8.
Some invasive plants perform better in their area of introduction than in their native region, and this is often attributed either to phenotypic responses and/or to adaptive evolution following exposure to new environmental conditions. Genista monspessulana (French broom) is native to Europe, but highly invasive and abundant along the Pacific Coast of the USA. In this study, the population density and age structure, plant growth and reproductive traits, and seed bank characteristics of 13 native (Mediterranean Basin) and 15 introduced (California, USA) field populations of G. monspessulana were compared. Mean population density, plant height and stem diameter were greater in introduced populations, with the latter two traits explained by a greater mean plant age. Age structure also showed a greater percentage of seedling plants in introduced populations. Fecundity was higher in introduced populations when measured in terms of mature seeds per pod, but lower when comparing seed production per plant (number of pods and mature seeds). Thus, seed rain and seed bank size was considerably higher in introduced populations. Results from this study indicate that G. monspessulana performs better in its introduced region. We hypothesize that release from natural enemies and competitors together with more favorable environmental conditions in the introduced region may explain the invasion success of G. monspessulana. As a result, an integrated management approach using introduced seed predators to suppress seed production and selected management practices to reduce seed banks may be needed for effective long-term control in California.  相似文献   

9.
Human-mediated hybridization is a leading cause of biodiversity loss worldwide. How hybridization affects fitness and what level of hybridization is permissible pose difficult conservation questions with little empirical information to guide policy and management decisions. This is particularly true for salmonids, where widespread introgression among non-native and native taxa has often created hybrid swarms over extensive geographical areas resulting in genomic extinction. Here, we used parentage analysis with multilocus microsatellite markers to measure how varying levels of genetic introgression with non-native rainbow trout (Oncorhynchus mykiss) affect reproductive success (number of offspring per adult) of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) in the wild. Small amounts of hybridization markedly reduced fitness of male and female trout, with reproductive success sharply declining by approximately 50 per cent, with only 20 per cent admixture. Despite apparent fitness costs, our data suggest that hybridization may spread due to relatively high reproductive success of first-generation hybrids and high reproductive success of a few males with high levels of admixture. This outbreeding depression suggests that even low levels of admixture may have negative effects on fitness in the wild and that policies protecting hybridized populations may need reconsideration.  相似文献   

10.
In this paper we examine some ecological consequences and phenotypic correlates of flower size variation in wild radish, Raphanus sativus. Mean corolla diameter varied significantly among individuals within natural populations of R. sativus in California. On the average, almost 40% of flower biomass was allocated to corolla tissue. In field experiments, pollinator visitation increased significantly with corolla size. Large flowers also accumulated more nectar when pollinators were excluded from plants. In three populations, corolla size was positively correlated with allocation to pollen per flower (either anther weight or pollen grain number), but there was usually no phenotypic relationship between corolla size and several measures of female allocation (ovule number per flower, proportion fruit set, and total seed mass per fruit). Plants growing in the field produced fewer large flowers per unit of stem, and stem biomass was negatively related to corolla size for plants grown under controlled greenhouse conditions. Male and female fitness may covary differently with allocation to attractive floral features in species such as R. sativus, where seed production is often limited by resources rather than by pollen.  相似文献   

11.
Summary Allozyme surveys of cultivated plant species generally report little within-cultivar variation, but considerable among-cultivar variation. This trend contrasts with natural plant populations in which most allozyme variation resides within, rather than among, populations. The difference may be an artifact of the extreme inbreeding techniques used to develop and propagate these crops, rather than a consequence of domestication per se. To test this hypothesis, we compared the population genetic structure of 24 lines of radish cultivars — a domesticated species developed and maintained as open-pollinated, outcrossed populations — with four wild radish populations in California. Although the wild populations displayed more overall allozyme variation than the cultivars, most of the allozyme variation in the cultivars remains partitioned within, rather than among, lines. Apparently, how a crop is developed and maintained can have a profound influence on the organization of genetic variation of that species.  相似文献   

12.
Intraspecific hybridization between diverged populations can enhance fitness via various genetic mechanisms. The benefits of such admixture have been proposed to be particularly relevant in biological invasions, when invasive populations originating from different source populations are found sympatrically. However, it remains poorly understood if admixture is an important contributor to plant invasive success and how admixture effects compare between invasive and native ranges. Here, we used experimental crosses in Lythrum salicaria, a species with well-established history of multiple introductions to Eastern North America, to quantify and compare admixture effects in native European and invasive North American populations. We observed heterosis in between-population crosses both in native and invasive ranges. However, invasive-range heterosis was restricted to crosses between two different Eastern and Western invasion fronts, whereas heterosis was absent in geographically distant crosses within a single large invasion front. Our results suggest that multiple introductions have led to already-admixed invasion fronts, such that experimental crosses do not further increase performance, but that contact between different invasion fronts further enhances fitness after admixture. Thus, intra-continental movement of invasive plants in their introduced range has the potential to boost invasiveness even in well-established and successfully spreading invasive species.  相似文献   

13.
We documented effects of floral variation on seed paternity and maternal fecundity in a series of small experimental populations of wild radish, R. sativus. Each population was composed of two competing pollen donor groups with contrasting floral morphologies and several designated maternal plants. Progeny testing with electrophoretic markers allowed us to measure paternal success. Realized fecundity by each maternal plant and the fraction of those seeds attributable to each pollen donor group were used as outcome variables in path analysis to explore relationships between floral characters (petal size, pollen grain number per flower, and modal pollen grain size), pollinator visitation patterns, and reproductive success. A wide range of pollinator taxa visited the experimental populations, and patterns of discrimination appeared to vary among them. The impact of visitation on male and female reproduction also varied among taxa; visits of small native bees significantly increased paternal success, while those of honey bees reduced male fitness. Only visits by large native bees had discernible effects on recipient fecundity, and, overall, fecundity was not limited by visitation. Maternal plants bearing large-petalled flowers produced fewer flowers during the experiment, reducing their total seed production. In these small populations, postpollination processes (at least in part, compatibility) significantly influenced male and female reproductive success. Variation in pollinator pools occurring on both spatial and temporal scales may act to preserve genetic variation for floral traits in this species.  相似文献   

14.
Many plant taxa are both hybrid-derived and invasive, suggesting a causal connection. However, given that hybridization is not rare in plants, we should expect some fraction of invasive taxa to be hybrids, even in the absence of an underlying causal relationship. Here, we test the hypothesis that hybridization leads to invasiveness by asking whether the number of hybrids and the numbers of naturalized, weedy, and invasive taxa are correlated across 256 vascular plant families. Data were derived from six regional floras and three global databases listing weeds and invasives. To account for phylogenetic nonindependence, we combined a supertree analysis with phylogenetically independent contrasts. After correcting for family size and phylogeny, we conclude that vascular plant families with a higher propensity for hybridization are not more likely to produce more naturalized, weedy, or invasive species than families less prone to hybridization. Instead, hybridization-prone families were in some cases associated with fewer naturalized species and invaders. We present two hypotheses for these patterns, one based on Levin’s (Syst Bot 31:8–12, 2006) ideas on reproductive interference and another based on Darwin’s naturalization hypothesis. While these results do not preclude the possibility that hybridization generates weedy and invasive taxa with some frequency, they do suggest that the signal from the hybridization-invasion process may be relatively weak and easily obscured by other processes governing plant invasions.  相似文献   

15.
Two genetically distinct potato psyllid populations [Bactericera cockerelli (Sulc) (Homoptera: Psyllidae)] were identified in our previous study: native and invasive. The invasive population, ranging from Baja, Mexico to central California, was the result of a recent invasion, while the native population is endemic to Texas. The native (Texas) and invasive (California) populations were collected from tomato and pepper, respectively, and were examined on both hosts to test the comparative fitness of invasive populations. Our results indicated that on both plant hosts, psyllids from the native range demonstrated higher survivorship, a higher growth index, and shorter development times than the psyllids from invasive populations. The fecundity of the native-range psyllids also was significantly higher than that of invasive psyllids on tomato, but not on pepper. For the native population, host plant differences for all fitness measurements were not significant. However, within the invasive population, psyllids feeding on tomatoes showed consistently better survivorship and a higher growth index than those feeding on pepper, despite the decreased developmental time required on peppers. The LC50 values (concentrations causing 50% mortality) of both populations were determined for three pesticides. Resistance to two of these pesticides was found in the invasive population. Thus, the invasive quality of the California populations may be related to increased pesticide resistance. However, it is impossible to determine if the California population was preadapted to pesticide resistance, or if the resistance developed after the range expansion and is simply a contributing factor to maintaining the expansion.  相似文献   

16.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

17.
The interaction between the European wild parsnip Pastinaca sativa and its coevolved florivore the parsnip webworm Depressaria pastinacella, established in North America for over 150 years, has resulted in evolution of local chemical phenotype matching. The recent invasion of New Zealand by webworms, exposing parsnips there to florivore selection for the first time, provided an opportunity to assess rates of adaptive response in a real‐time experiment. We planted reciprocal common gardens in the USA and NZ with seeds from (1) US populations with a long history of webworm association; (2) NZ populations that had never been infested and (3) NZ populations infested for 3 years (since 2007) or 6 years (since 2004). We measured impacts of florivory on realized fitness, reproductive effort and pollination success and measured phenotypic changes in infested NZ populations relative to uninfested NZ populations to determine whether rapid adaptive evolution in response to florivory occurred. Irrespective of country of origin or location, webworms significantly reduced plant fitness. Webworms reduced pollination success in small plants but not in larger plants. Although defence chemistry remained unchanged, plants in infested populations were larger after 3–6 years of webworm florivory. As plant size is a strong predictor of realized fitness, evolution of large size as a component of florivore tolerance may occur more rapidly than evolution of enhanced chemical defence.  相似文献   

18.
The more the better? The role of polyploidy in facilitating plant invasions   总被引:1,自引:0,他引:1  

Background

Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant''s genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive.

Scope

We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success.

Conclusions

Polyploidy can be an important factor in species invasion success through a combination of (1) ‘pre-adaptation’, whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the ‘evolution of invasiveness’. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species.  相似文献   

19.
Summary To document seasonal changes in the reproductive behavior of the perfect-flowered, self-incompatible mustard, Raphanus sativus L., we monitored individual survival, flower and fruit production among 58 individuals in a California population over six census dates (cohorts). Population size declined dramatically and mean individual levels of fruit set changed significantly between cohorts. The frequency distribution of flower and fruit production became increasingly skewed over the first four cohorts. The phenotypic maleness of individuals, a standardized measure of phenotypic gender, oscillated during the reproductive season, peaking in the third and fourth cohorts. We calculated a simple estimate of expected male reproductive success of each plant (the number of fruits sired on conspecifics); this estimate was a function of an individual's flower production and the fruit production of its potential mates in our sampled population. Mean expected male success did not differ significantly among cohorts; expected male success per flower did, however, change significantly among cohorts. Among individuals within each cohort, maternal fruit production and expected male success were both positively correlated with flower production throughout the season. Spearman rank correlation coefficients indicate that the strength of these associations, however, changed during the season. Linear regressions of transformed variables indicated that the shape of several fitness functions also changed over time. In addition, the amount of variation in maternal or expected paternal success explained by flower production declined over the first four cohorts. If typical of wild populations, these temporal changes in these functions suggest that measurements of the intensity of phenotypic selection on flower production will depend on when and how fitness is measured in natural populations.  相似文献   

20.
?Premise of the study: Pyrus calleryana Decne., an ornamental tree species introduced from China, is a relatively new invasive that has only recently begun to spread across the United States after intraspecific hybridization between cultivars. The function of such hybridization in the evolution of invasiveness is still relatively understudied, especially with respect to the initial establishment and persistence of invasive genotypes. Multiple introductions of genetically divergent populations or cultivars may benefit from new genetic combinations created during hybridization events and/or release from Allee effects in founder populations. ?Methods: We quantified the outcome of intraspecific hybridization between cultivars of P. calleryana in a common garden. Measures of the reproductive success and establishment ability of their early- and advanced-generation hybrid offspring were collected to assess the likelihood of particular cultivar genotypes to establish in invasive populations. These traits also were compared between cultivated and invasive parents to identify any generational differences in invasive potential. ?Key results: Differences were detected in measures of reproductive ability, but no group emerged as consistently more fecund. Advanced-generation hybrids also had significantly less biomass, indicating a reduction in hybrid performance relative to that of the cultivated progeny. ?Conclusion: Ultimately, this study indicates that increased spread of P. calleryana has been initiated by introduction of multiple cultivar types and subsequent widespread planting and is not the result of an inherent fitness advantage of hybrid progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号